

Measurements of atmospheric trace gases with a ground based DOAS instrument in Nairobi (1°S, 37°E)

S. Fietkau, D. Adukpo, T. Medeke, H. Oetjen, A. Richter, F. Wittrock., and J.P. Burrows

Department 01 Physics and Electrical Engineering

Overview

- Measurement Site
- MAX-DOAS instrument
- Data Analysis
- Results
- Summary and Outlook

Measurement Site (I)

- 4 -

Measurement Site (III)

- Nairobi (1.2°S, 36.8°E)
- 1624 m above sea level
- installed in the headquarter of the United Nations Environmental Programme (UNEP), 15 km away from downtown Nairobi
- viewing direction: South to Downtown

Instrument (I)

- Czerny-Turner Spectrograph L.O.T. MS257 (focal length 257 mm, 1200 l/mm grating) and CCD Andor DV440-BU (2048 x 512 pixels) for the UV spectral range
- L.O.T. MS260i (focal length 260 mm, 600 l/mm grating) and CCD Andor DV420-BU (1024 x 256 pixels) for the visible range
- UV/vis wavelength regions: 320 410 nm, 395 565 nm
- spectral resolution: ~0.5 nm
- targeted trace gases: O₃, NO₂, BrO, HCHO, IO, OCIO

Instrument (II)

- atmospheric viewing directions:
 - Zenith
 - 4 lines of sight to horizon (4°, 7°, 16°, 30°)
- daily calibration measurements

Data Analysis

- to derive slant columns of trace gases the DOAS method is used
- to convert slant columns (SC) to vertical columns (VC) radiative transfer model SCIATRAN for calculation of air mass factors (AMF):

AMF(SZA) = SC / VC

full spherical, refraction and full multiple scattering included

GOME, Andreas Richter IUP Bremen

GOME, Andreas Richter IUP Bremen

TOMS, NASA

TOMS, NASA

Department 01 **Physics and Electrical Engineering**

- 12 -

2004

O₃ Summary

- variation of the vertical column: 255-275 DU
- in principle good agreement with TOMS and GOME measurements, except a period end 2002/ beginning 2003
- possible explanation: ITCZ position

SCIAMACHY: Andreas Richter, IUP Bremen

NO₂ Summary

- pronounced diurnal variation (photolysis of N_2O_5 in stratosphere, diurnal variation of NO_2 in troposphere)
- small variation of the NO₂ values during the whole measurement period
- SCIAMACHY results are in the same order of magnitude (an offset of 1E15 molec/cm² is added)
- SCIAMACHY variation with time match very well with the afternoon values of the ground based measurements

BrO Summary

- total amount of the slant columns is around 1,5*10¹⁴ molec/cm²
- compared to measurements at other latitudes e.g. Fish at Aberdeen, Arpag at Colorado, Kreher at Arrival Heights and Wittrock at Ny Ålesund (1-3*10¹⁴ molec/cm²) the values are in the same order of magnitude
- principle agreement with model results from other latitudes
- afternoon values are slightly higher than the morning values

Summary

- instrument installed in August 2002, second part in January 2004
- detection of O₃, NO₂, BrO, HCHO, O₄
- variation of ozone between 255 and 275 DU, but no strong seasonality
- no seasonal variation of NO₂, but increasing values in 2003, strong diurnal variation
- no significant seasonal variation of the BrO DSCD's
- long-term validation of SCIAMACHY products is possible

Department 01 Physics and Electrical Engineering

Outlook

- comparison of BrO with modelled data
- tropospheric columns
- validation of SCIAMACHY

Acknowledgements

- German Federal Ministry of Education and Research (BMBF)
- German Aerospace Agency (DLR)
- Deutsche Forschungsgemeinschaft (DFG, German Research Council)
- State and University of Bremen and
- the UNEP, especially the staff from the Ozone Secretariat

The End

- 21 -

