Tropospheric Halogen Chemistry

(A Short Presentation)

by Oluyemi Afe.

Overview

- Introduction
- Main Reaction Mechanisms
- Tropospheric sources of reactive halogen species
- Sinks of reactive halogen species
- Iodine Chemistry looks interesting!
- Open Questions
- Summary

Universität Bremen

Introduction

- Discovery of sudden boundary layer (BL)
 Ozone depletion events (ODE) observed to
 correlate with enhanced concentrations of
 filterable bromine compounds after polar
 sunrise.
- Reactive Halogen Species (RHS)
 responsible for complete depletion of BL
 Ozone in the Arctic and Antarctic Spring.
 - DOAS measurements in the BL revealed enhanced concentrations of halogen oxides, especially BrO in polar spring.
 - Satellite data from GOME shows tropospheric BrO.

Main Reaction Mechanisms Destroying Ozone.

Where X = Cl, Br, or I

- $X + O_3 \rightarrow XO + O_2 \tag{1}$
- $Y + O_3 \rightarrow YO + O_2 \tag{2}$
- $XO + YO \rightarrow X + Y + O_2 \tag{3}$
- Net I: $2O_3 \rightarrow 3O_2$

 $\lambda < 600nm$ $X_{2} + hv \rightarrow 2X$ $O_{3} + X \rightarrow XO + O_{2}$ $XO + HO_{2} \rightarrow HOX + O_{2}$ $HOX + hv \rightarrow X + OH$ $OH + CO(or VOC) + O_{2} \rightarrow CO_{2} + HO_{2} (or other products)$

Net II: $CO + O_3 \rightarrow CO_2 + O_2$

Sources of RHS

- Emissions from organic halogen compounds e.g. CH₃Br, CH₃Cl, CHBr₃ & CH₃I.
- Liberation from sea salt deposits or sea salt aerosols.
- Industry and fossil fuel burning.
- Biomass burning.
- Emissions from marine algae.
- Volcanoes.

Universität Bremen

Sinks of RHS

• Reaction with hydrocarbons.

 $X + RH \rightarrow HX + R$

• Reaction with nitrogen oxides, NO and NO_{2.}

 $NO + XO \rightarrow XONO$

 $NO_2 + XO \rightarrow XONO_2$

• Reaction with HO₂ and organic peroxy radicals RO₂

$X + HO_2 \rightarrow HX + O_2$

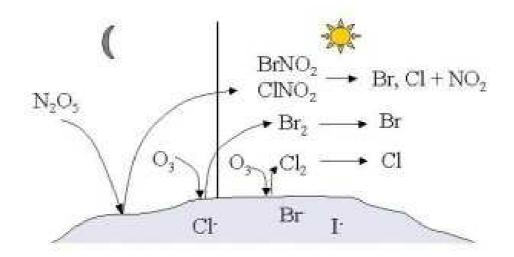
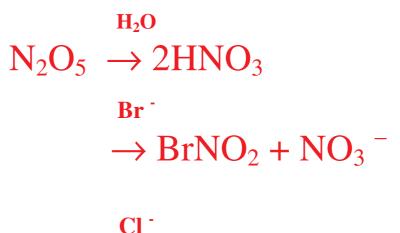



Fig 1:Heterogeneous mechanisms suspected to release RHS from sea salt

\rightarrow ClNO₂ + NO₃⁻

Photolysis of XNO_2 releases halogen radicals into the gas phase.

Oluyemi Afe

Universität Bremen

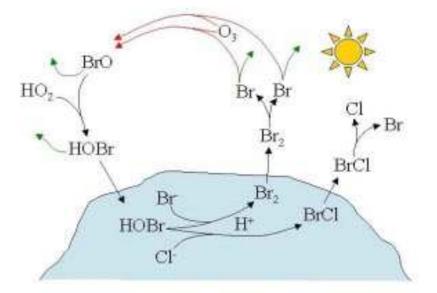
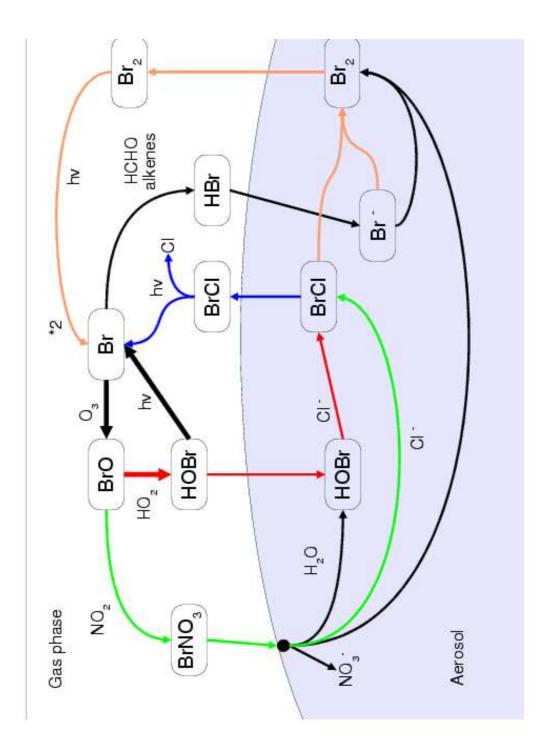



Fig 2: Bromine release mechanism by Vogt et al 1996 (Uptake of HOBr on acidic salt surfaces)

 $\begin{array}{l} BrCl + hv \rightarrow Br + Cl \qquad \lambda < 560 nm \\ Br + O_3 \rightarrow BrO + O_2 \\ BrO + HO_2 \rightarrow HOBr + O_2 \\ HOBr \rightarrow HOBr_{aq} \\ HOBr_{aq} + H^+ + Cl^- \rightarrow BrCl_{aq} + H_2O \\ BrCl_{aq} + Br^- \leftrightarrow Br_2Cl^- \\ Br_2Cl^- \leftrightarrow Br_{2aq} + Cl^- \\ Br_{2aq} \leftrightarrow Br_2 \\ \end{array}$ $\begin{array}{l} Net: BrCl + O_3 + HO_2 + Br^- + H^+ \rightarrow Cl + Br_2 + H_2O + 2O_2 \end{array}$

Oluyemi Afe

Universität Bremen

Oluyemi Afe

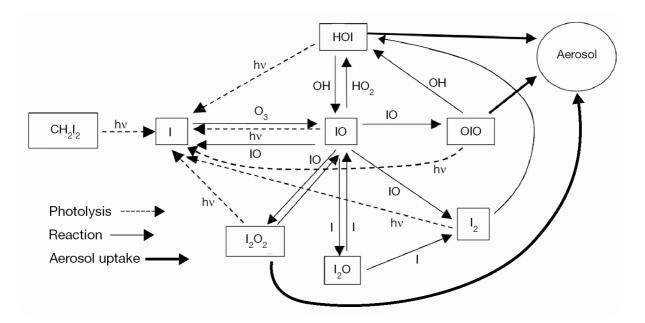
Figure courtesy Rolf Sander et al

Iodine Chemistry looks Interesting!

- Main source of reactive Iodine in the MBL is emission of biogenic alkyl iodides (BAI) produced in the ocean by various types of microalgae & phytoplankton.
- In sea salt aerosols, Iodine is strongly enriched (100-1000) times the seawater ratio hence aerosols appear to be a SINK rather than source in MBL.
- Biogenic alkyl iodides are rapidly destroyed by photolysis or degradation with OH to form (I, IO) which potentially has a strong impact on BL Ozone chemistry.

•	Short lifetimes make estimates of fluxes difficult.		
	Biog. alkyl Iodide	Lifetimes**	Typ.mix ratio
	$CH_2I_2^*$	~5mins	$0.5 pmol mol^{-1}$
	CH ₂ ClI	~4.5hrs	<1pmol mol ⁻¹
	CH ₃ I	~ 5days	$UL 43 pmol mol^{-1}$
	C_3H_7I	~40hrs	$0.2-2 \text{ pmol mol}^{-1}$

Mixing ratios compiled by Vogt et al 1999.


* By Pruvost et al of up to 57 pmol mol⁻¹ during a phytoplankton bloom.

** Lifetime measurements taken at mid-latitudes.

• Detection of IO and OIO by DOAS technique in the coastal MBL and IO in the polar regions.

Fate of reactive Iodine.

Chemical pathway from CH_2I_2 to aerosol production, on the basis of current state of the Knowledge of the gas-phase chemistry. Adapted from Colin O'Dowd et al 2002.

Open Questions!

- What is the global distribution of RHS in the BL?
- What are the release processes for the RHS observed at different locations?
- What are the levels of RHS in the free troposphere?
- How can RHS influence the Ozone budget on a global scale? What are the conditions (meteorology, tide, biology) necessary for a release of reactive Iodine? What are the exact sources?
- How frequent and where can elevated levels of reactive Iodine be found?
- What are the deposition rates of the different Iodine compounds?
- What are the consequences for the oxidizing capacity of the atmosphere and the global radiation budget?

