Estimating the source strength of nitrogen oxide emissions of Berlin based on airborne imaging DOAS measurements

Andreas C. Meier *^{(1),} Andreas Richter ⁽¹⁾, Tim Bösch ⁽¹⁾, Anja Schönhardt ⁽¹⁾, Thomas Ruhtz ⁽²⁾, John P. Burrows ⁽¹⁾

Institute of Environmental Physics, University of Bremen, Germany
 Institute for Space Science, FU Berlin, Germany

*Email: ameier@iup.physik.uni-bremen.de

1. Introduction

- Nitrogen oxides $(NO_x = NO + NO_2)$ are:
 - harmful to health and environment and play a key role in atmospheric chemistry
 - a major pollutant in urban areas, despite reduction in the last decades
- Chemical modeling requires knowledge on emissions, which is sparse at high spatial resolution
- Top-down estimates can be used to validate bottom-up inventories

2. Campaigns & target site

- Airborne imaging DOAS measurements performed with the AirMAP instrument, developed at IUP-Bremen on board of the FU Berlin Cessna
- Flights carried out in the framework of the campaigns AROMAT-1 (2014), AROMAT-2 (2015) and AROMAPEX (2016) funded by ESA / EUFAR
- Four mappings of NO₂, each covering almost the entire city of Berlin
- Berlin is capital and largest city of Germany with about 3.6 million inhabitants

ESA LPS 2019

A1.08

Area C

Board 274

3a. Method for emission estimates

Basis: Gauss' divergence theorem, describing the flux (F)

of a vector field though a closed surface

- Required input data:
- Vertical Column Density (VCD) of trace gas
- Wind vector (\vec{w}) (speed & direction)
- For NO_x: Correction factor (c_f)
- Eventually correction for chemical loss (neglected here)
- $\mathbf{F} = \oint_{S} VCD(s) \cdot \vec{n} \cdot \vec{w} \cdot ds$ $\approx \sum_{i} VCD(s_{i}) \cdot |\vec{w_{i}}| \cdot cos(\beta_{i}) \cdot \Delta s_{i}$
- $\mathbf{c}_{\mathrm{f}} = \mathbf{1} + rac{[NO]}{[NO_2]}$; assumed constant 1.32 $F_{NO_x} = F_{NO_2} \cdot c_f$

4. Results

3b. Implementation

1. Gridded NO₂ VCD maps as basis

Left: Gridded maps of NO₂ VCD retrieved from four flights on three days above Berlin with the AirMAP instrument

 Different wind directions (easterly, northerly, westerly) lead to distinct spatial patterns

Flight	Wind direction / °	Wind speed / m s ⁻¹
2014-09-17	100	7.8
2015-09-28	359	5.3
2016-04-21 a	277	4.9
2016-04-21 b	278	5.1

2. Smoothing of NO_2 maps to discriminate noise and artifacts

- Largest emitter in the north west visible in all emission maps
- Spatial pattern variable between days, 2016
 flights show best agreement with inventory
- Small shift between E-PRTR sources and elevated grid cells (NO -> NO₂ conversion?)
- Summing over all grid cells gives consistent results
- Retrieved emissions larger than annual

average inventory

Top: Emission inventory for 2015 of total NO_x as published by the senate of Berlin. Blue markers correspond to large emitters listed in the E-PRTR.

Left: Emissions of NO₂ retrieved from AirMAP measurements.

Bottom: Sum of grid cells covered in every flight totaling to 632 km². Error bars estimated from uncertainties in VCD and wind.

Left: Gridded maps of NO₂ VCD
from above convolved with a
Gaussian kernel to reduce impact of
noise and artifacts from temporal
variability

- Little impact of smoothing on general spatial pattern
- Large emitters are readily discernible in the maps
- 3. Sampling the NO₂ VCD map along the perimeter for each grid cell in a sampling grid
 Here sampling grid is aligned with a high spatial resolution (1km x 1km) emission inventory
 - The perimeter of each cell is sampled in steps of 100 m
 - Integrating along the perimeter by method in 3a
 - Wind speed is interpolated from ERA-Interim reanalysis data, wind direction is determined from the NO_2 maps

Selected references

Schönhardt, A., Altube, P., Gerilowski, K., Krautwurst, S., Hartmann, J., Meier, A. C., Richter, A. and Burrows, J. P.: A wide field-of-view imaging DOAS instrument for twodimensional trace gas mapping from aircraft, Atmos. Meas. Tech., 8(12), 5113–5131, doi:<u>10.5194/amt-8-5113-2015</u>, 2015.

Meier, A. C., Schönhardt, A., Bösch, T., Richter, A., Seyler, A., Ruhtz, T., Constantin, D.-E., Shaiganfar, R., Wagner, T., Merlaud, A., Van Roozendael, M., Belegante, L., Nicolae, D., Georgescu, L. and Burrows, J. P.: High-resolution airborne imaging DOAS measurements of NO₂ above Bucharest during AROMAT, Atmos. Meas. Tech., 10(5), 1831–1857, doi:<u>10.5194/amt-10-1831-2017</u>, 2017.

 AROMAT special issue in AMT: https://www.atmos-meas-tech.net/special_issue868.html

Universität Bremen

www.iup.uni-bremen.de/doas

Acknowledgements

The authors gratefully acknowledge funding of the AROMAT campaigns by ESA, and

further financial support by the University of

Bremen. Moreover we would like to thank air

traffic control for the approval of the research

flights and all institutions that contributed to

the successful course of the campaign.

5. Summary & Outlook

- Airborne imaging DOAS data from the AirMAP instrument was used to derive emission rates of NO₂ on small spatial scales
- Novel approach based on established concepts
- Retrieved emissions larger than inventory. Large uncertainty from wind data
- Comparison of single days to annual average
- Improving the method requires reliable high-resolution meteorological data,
 - e.g. to calculate accurate trajectories
- The concept can be applied to satellite data

