IUGG 2011, M10, # 2488 Long-term observations of pollution from space

A. Richter¹, F. Wittrock¹, A. Hilboll¹, J. Leitão¹, A. Zien¹, M. Vrekoussis^{1, 2}, and J. P. Burrows¹ 1) Institute of Environmental Physics/Remote Sensing, University of Bremen, FB 1, P.O. Box 330440, D-28334 Bremen, Germany Email: Andreas.Richter@iup.physik.uni-bremen.de 2) Academy of Athens, Athens, Greece

Introduction	GOME, SCIAMACHY, and GOME-2		
 pollution affects millions of people worldwide rapid changes in pollution levels took place over the last decade as result of population 	GOME: Iaunched on ERS-2 in	SCIAMACHY:	GOME-2: Iaunched on MetOp-A in
 increase in cities, economic development, and environmental regulation changes pollution monitoring is well established in industrialised countries, but not yet in all parts of the world 	 April 1995 data 7.1995 - 6.2003 4 channel nadir viewing 	 Iaunched on ENVISAT in March 2002 data since August 2002 8 channel nadir and limb 	 October 2006 data since January 2007 4 channel nadir viewing
 satellite observations provide measurements of key quantities for tropospheric pollution they have large uncertainties for individual observations but provide global coverage and 	 UV/visible spectrometer 	viewingUV/visible/NIR spectrometer	UV/visible spectrometer
 they have large uncertainties for individual observations but provide global coverage and consistent long-term data sets improved spatial resolution of current instruments allows observation on regional levels future instruments will provide data at resolutions enabling monitoring of pollution for individual cities 	 320 x 40 km² pixel size global coverage: 3 days 10:30 LT equator crossing 	 60 x 30 km² pixel size global coverage: 6 days 10:00 LT equator crossing 	 80 x 40 km² pixel size global coverage:1.5 days 09:30 LT equator crossing first in a series of 3

SCIAMACHY NO₂ change

2003 - 2010

Longitude

 ΔNO_2

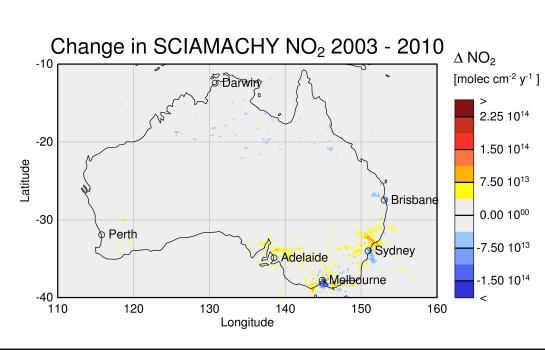
10lec cm⁻² y⁻¹]

1.50 10¹⁴

.00 1014

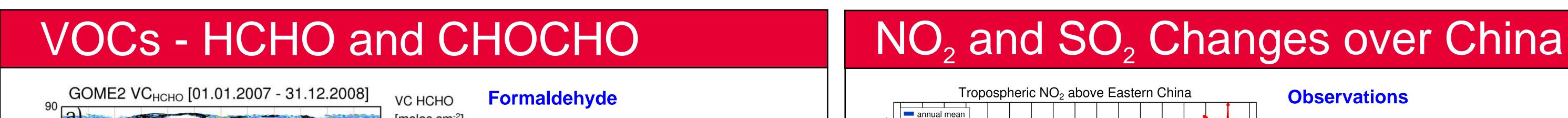
 $5.00 \ 10^{13}$

0.00 1000

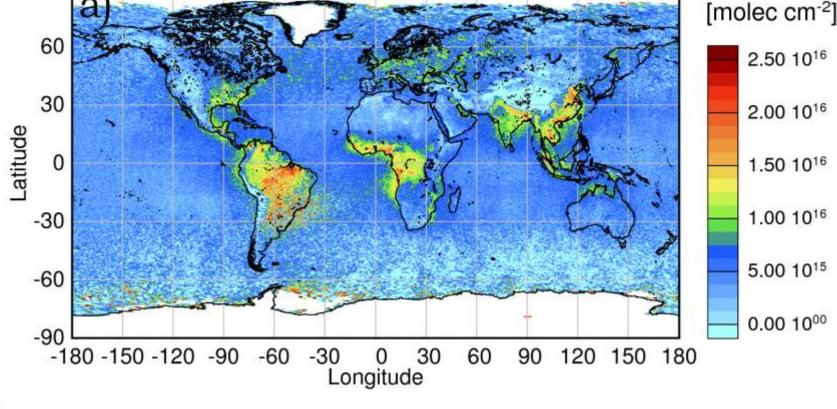

5.00 10¹³

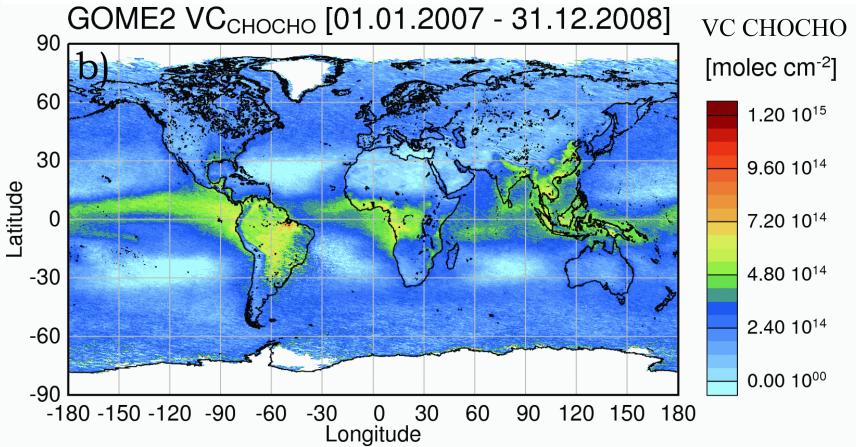
Global change of NO₂

SCIAMACHY NO₂ change 2003 - 2010 60 ΔNO_2 [molec cm⁻² y⁻¹] > 6.00 10¹⁴ 30 4.00 10¹⁴ Latitude 2.00 10¹⁴ $0.00\ 10^{00}$ -2.00 10¹⁴ -30 -4.00 1014 150 -180 -150-120 -60 120 180 Longitude

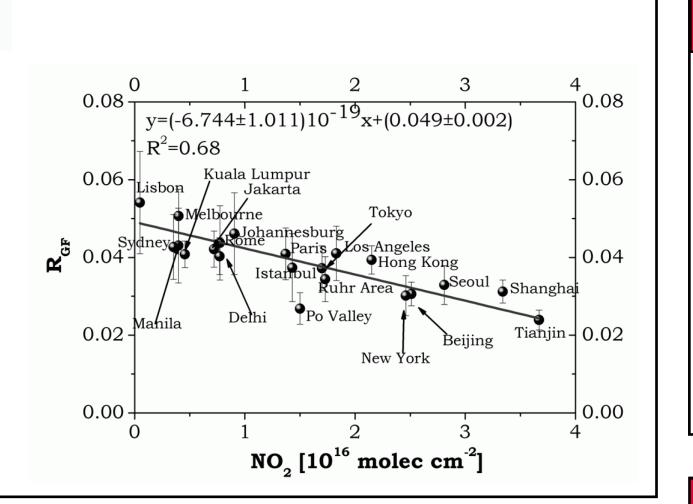

Observations

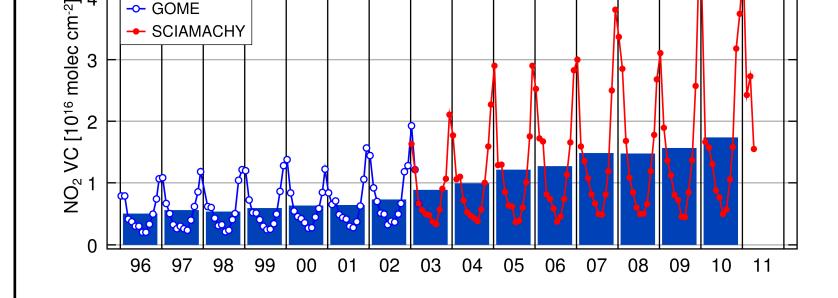
- large and systematic changes over last decade
- large increase in China as economy develops
- large decrease throughout the US
- decreases in Western Europe, but not as clear as in the US
- downward trends also in Japan, Hong Kong, and some cities in Australia

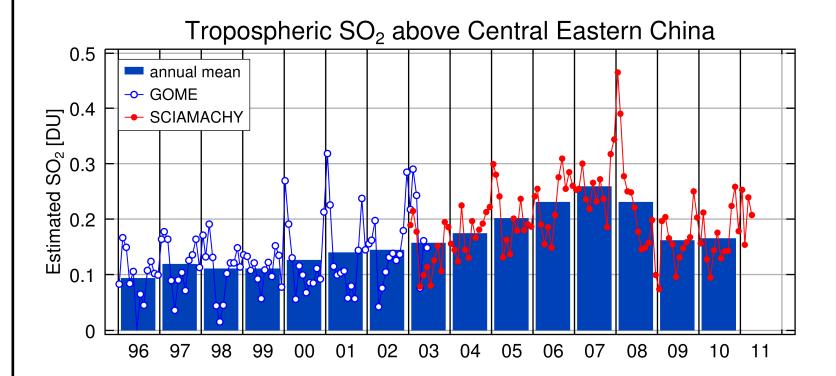

mixed situation in Eastern Europe / Russia systematic and large increases in the Arabian countries and in India,


- but much more localised than in China
- clear upward trends in cities in Central and South America, as well as in Africa

NO₂ columns in the selected region show a strong annual increase with the exception of the 2008 / 2009 period (Olympics, economic downturn) reasons: increased use of fossil fuels for energy production and transportation as economy grows large seasonality in NO₂ columns (photochemistry, emissions) excellent agreement between GOME and SCIAMACHY in the overlapping time period SO₂ columns also show increase, but only until 2007 when flue gas desulphurisation became mandatory for power plants


Ratio Glyoxal / Formaldehyde


- HCHO and glyoxal global distributions are similar
- ratio of glyoxal to HCHO should depend on sources
- different ratios are observed over biomass burning, biogenic emissions, and anthropogenic sources
- a very clear correlation is found for the ratio over


- signal is dominated by biogenic sources
- some contributions from biomass burning, mainly seen over individual large fire areas
- some coastal areas with enhanced HCHO over the ocean

- dominated by biogenic sources
- clearly enhanced over fires
- some higher values over anthropogenic pollution
 - high values over tropical oceans -
 - indication for oceanic source?

Conclusions

- Long-term satellite observations provide consistent data sets to monitor pollution
- NO₂ columns have changed significantly over the last decade, with large increases over China and in many developing cities and decreases over the US, Europe and Japan
- Environmental regulations show effect in China where the increase in SO₂ values has stopped and even reversed in 2007
- Although global VOC fields are dominated by biogenic emissions, ratios of glyoxal to formaldehyde show strong correlation to NO₂ over large cities indicating anthropogenic

large cities if plotted as function of NO₂ (marker for anthropogenic pollution)

Acknowledgements

- GOME-2 radiances have been provided by EUMETSAT, GOME and SCIAMACHY \bullet radiance by ESA through DLR
- This project has been funded by the University of Bremen, the European Union through ulletthe CITYZEN project and the DFG via INTA

Universität Bremen

emission sources

Selected References

Leitão, J., Richter, A., Vrekoussis, M., Kokhanovsky, A., Zhang, Q. J., Beekmann, M., and Burrows, J. P.: On the improvement of NO2 satellite retrievals – aerosol impact on the airmass factors, Atmos. Meas. *Tech.*, **3**, 475-493, 2010

Richter, A., Burrows, J. P., Nüß, H., Granier, C, Niemeier, U., Increase in tropospheric nitrogen dioxide over China observed from space, *Nature*, **437**, 129-132, doi: 10.1038/nature04092, 2005 Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO2 retrieval for the GOME-2 satellite instrument, Atmos. Meas. Tech. Discuss., 4, 213-246, doi:10.5194/amtd-4-213-2011, 2011 Vrekoussis, M., Wittrock, F., Richter, A., and Burrows, J. P.: GOME-2 observations of oxygenated VOCs: what can we learn from the ratio glyoxal to formaldehyde on a global scale?, Atmos. Chem. Phys., 10, 10145-10160, doi:10.5194/acp-10-10145-2010, 2010 Wittrock, F., A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S.

Beirle, U. Platt, and T. Wagner, Simultaneous global observations of glyoxal and formaldehyde from space, Geophys. Res. Lett., 33, L16804, doi:10.1029/2006GL026310, 2006

see also: www.iup.uni-bremen.de/doas