

Universität Bremen

1. Introduction & Motivation

Fig. 1: The bromine explosion (Figure from Jones et al., 2009) [1] 3. Tropospheric BrO in the Arctic & Relation to Sea Ice • The formula that is used for the calculation of the BrO tropospheric vertical column is: VCD_{tropo} = (SCD_{total} - VCD_{strato} x AMF_{strato}) /

• Air temperature in the Arctic increases at a double rate compared with the worldwide mean. This phenomenon is called Arctic Amplification. • Bromine plays a key role in the arctic atmospheric composition. During polar spring, it is released from young sea ice, blowing snow & frost flowers, and through an autocatalytic chemical cycle known as BrO explosion (Fig.1), it depletes ozone by creating bromine oxides and consequently changes the oxidizing capacity of the atmosphere. • BrO explosion events can be effectively studied by satellite remote sensing (Fig.2). • Our goal is to assess the changes in the halogen atmospheric composition of the Arctic due to Arctic Amplification, by creating a consistent long-term BrO dataset, which will act as the basis for evaluating possible trends and links to drivers of tropospheric BrO. **2. DOAS Retrieval Method – Geometric Columns & Stratospheric BrO Separation**

• In order to study the evolution of BrO over the Arctic, we have retrieved BrO columns from four UV – VIS remote sensing instruments using the DOAS method, which is based on **Beer – Lambert's law**: $I = I_0 e^{-\int \sigma(\lambda) \rho ds}$

Instrument	Platform	Time Period	Footprint	Equatorial Overpass	Swath	Fitting Window
GOME	ERS-2	1995 – 2003	320X40 km ²	10.30	960 km	336.8 – 358
SCIAMACHY	Envisat	2002 – 2012	30X60 km ²	10.00	960 km	336 – 347
GOME-2A	MetOp – A	2007 – Present	80X40 km ² (40X40 km ²)	09.30	1920 km	337.5 – 357
GOME-2B	MetOp – B	2013 - Present	80X40 km ²	09.30	1920 km	338 – 360

• The geometric BrO vertical column is obtained by dividing the output of the retrieval (Slant Column) for each instrument with a simple geometric **Air Mass Factor**:

Fig. 3: 22 years of daily geometric BrO vertical columns from GOME, SCIAMACHY, GOME-2A & GOME-2B for the Arctic region

• To extract the tropospheric BrO column from our retrievals, we first obtain the BrO stratospheric vertical column; a model based BrO climatology is used [3], which takes as inputs satellite retrievals of O₃, NO₂ & tropopause height [4], [5], [6] and gives an estimation of vertical columns of stratospheric BrO, independently of the performed BrO retrievals:

4. Conclusions & Outlook

• A consistent long-term Arctic BrO dataset was developed, by using four UV-VIS satellite instruments

- Our dataset demonstrates high agreement for the overlapping periods between the sensors • By applying the stratospheric separation method, we extracted the first to our knowledge long-term tropospheric BrO dataset for the Arctic region
- Our tropospheric BrO time-series indicate that there is an increase of BrO explosion events over the latest years
- Furthermore, we see that the increase of first year ice covered regions may favor the increase of tropospheric BrO (also regarding the areas where it appears)

Future Work:

- Compare and evaluate the trends of our time-series
- Study the relationship of tropospheric BrO to meteorological drivers

Long-term Time-series of Arctic BrO Derived from Satellite Remote Sensing and its Relation to **Driving Mechanisms under the Impact of Arctic Amplification**

Ilias Bougoudis¹, Anne-Marlene Blechschmidt¹, Andreas Richter¹, Sora Seo¹, John P. Burrows¹ ¹ Institute of Environmental Physics, University of Bremen, Germany (ibougoudis@iup.physik.uni-bremen.de) EGU General Assembly 2019, 7-12 April 2019, Vienna, Austria

5	. R
1.	Α. Ε.
2.	AM
З.	N. Tł
4.	K. F.
5.	М. И
6.	E. Ka
7.	М. А
8.	Y. Ye
9.	М. Т

Fig. 5: 22 years of daily tropospheric BrO vertical columns from GOME, SCIAMACHY, GOME-2A & GOME-2B for the Arctic region

• Tropospheric BrO maps provide additional information regarding the spatial distributions of BrO plumes; In the figure below, we see polar spring (March, April & May, MAM) mean BrO maps (merged between instruments, when we had an overlapping year) in the 1st row and the corresponding mean MAM sea ice age maps [7], [8], [9] (2nd row) for every year (columns):

Fig. 6: Year to year evolution of tropospheric BrO and sea ice age in the Arctic region

References & Acknowledgements

Jones et al: BrO, blizzards, and drivers of polar tropospheric ozone depletion events, (2009) . Blechschmidt et al: An exemplary case of a bromine explosion event linked to cyclone development in the Arctic, (2016) Theys et al: Global observations of tropospheric BrO columns using GOME-2 satellite data, (2011) Boersma et al: QA4ECV NO2 tropospheric and stratospheric vertical column data from GOME, SCIAMACHY, GOME-2A, GOME-2B and OMI (Version 1.1) [Data set], (2017) Weber et al: Stratospheric Ozone [in State of Climate in 2012], (2013)

alnay et al: The NCEP/NCAR 40-Year Reanalysis Project, (1996) Anderson et al: MEaSUREs Arctic Sea Ice Characterization Daily 25km EASE-Grid 2.0, Version 1, (2014, e et al: Improving multiyear ice concentration estimates with ice drift, (2016) Tschudi et al: EASE-Grid Sea Ice Age, Version 3, (2016)

We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project Number 268020496 – TRR 172, within the Transregional Collaborative Research Center "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³".

