# Airborne measurements of different trace gases during the AROMAT-2 campaign with an Avantes spectrometer.



### 1. Campaign

- AROMAT-2 (Airborne ROmanian Measurements of Aerosols and Trace gases) is a follow-up campaign of AROMAT-1 in 2014
- Flights with a Cessna (FU Berlin), within the second half of August 2015
- Targets:

- Turceni power plant (localized plume with high  $SO_2 \& NO_2$  emission) Bucharest (Traffic and Industry emissions of several trace gases)







On this poster: VC of NO<sub>2</sub> & HCHO over Bucharest and VC of NO<sub>2</sub> and SO<sub>2</sub> over the Turceni power plant. **Bucharest flight pattern (afternoon)** 

Typical altitude profile for flights



time (UT)





### 2. Instrument

|                  | AvaSpec-ULS2048x64                               |  |
|------------------|--------------------------------------------------|--|
| Optical Bench    | Symmetrical Czerny-Turner with 75mm focal length |  |
| Wavelength range | 287 – 551nm                                      |  |
| Resolution       | 2,3nm                                            |  |
| Straylight       | < 0.2%                                           |  |
| Signal/ Noise    | 500 : 1                                          |  |
| Integration time | 2.4ms – 60s                                      |  |
| FOV              | 8.1° → ~ 430m (@ altitude ~ 3km)                 |  |





Avantes spectrometer mounted on a Cessna airplane

### 7. Conclusion / Outlook

 We found NO<sub>2</sub> vertical columns up to 3x10<sup>16</sup> molecules/cm<sup>2</sup> over Bucharest with a strong temporal variation (mostly due to changes in trafifc emission) HCHO vertical columns match the peaks of nitrogen dioxide and show again strong variation in time and location • Additional spectral features during the Bucharest flight were found as algae within lakes around the city

- Jniversität Bremen



## [1] Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany [2] Institute for Space Science, FU Berlin, German tim.boesch@iup.physik.uni-bremen.de









| Parameter / Molecule              | Value           | Value          | Value     |
|-----------------------------------|-----------------|----------------|-----------|
| Species:                          | NO <sub>2</sub> | НСНО           | SC        |
| Fit windows                       | 425 – 490 nm    | 336.5 – 359 nm | 307.5 - 3 |
| Polynomial degree                 | 3               | 3              | 4         |
| Ozone, O <sub>3</sub>             | 223 K           | 223 K          | 223 K     |
| Oxygen-dymer, O <sub>4</sub>      | 293 K           | 293 K          |           |
| Nitrogen dioxide, NO <sub>2</sub> | 298 K           | 298 K          | 298 K     |
| Formaldehyde, HCHO                |                 | 297 K          |           |
| Sulfur dioxide, SO <sub>2</sub>   |                 |                | 294 K     |
| Water vapor, H <sub>2</sub> O     | 293 K           |                |           |
| Ring effect, Const.<br>Offset     | Yes, Yes        | Yes, Yes       | Yes, Yes  |



• High emissions of NO<sub>2</sub> and SO<sub>2</sub> could be found during the flight above the Turceni power plant with a strong lateral movement of the emission plume

We gratefully thank ESA for its financial support for the AROMAT-2 project as well as the University of Bremen for its additional financial support. Moreover we thank the Romanian authorities for the approval of flights in Romania and all institutions that contributed to the success of the whole campaign. Furthermore we thank our pilot J. C. Gordon for his support

## **European Geosciences Union General Assembly 2016**

Tim Bösch<sup>[1]</sup>, Andreas Meier<sup>[1]</sup>, Anja Schönhardt<sup>[1]</sup>, Enno Peters<sup>[1]</sup>, Andreas Richter<sup>[1]</sup>, Thomas Ruhtz<sup>[2]</sup> and John P. Burrows<sup>[1]</sup>

### 8. Acknowledgement & Selected References

[1] Schömhardt et al. 2015, A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping om aircraft, Atmos, Meas, Tech., 8, 5113-5131, 2015 [2] Zieger et al. 2007, Dual-aureole and sun spectrometer system for airborne measurements of aerosol optical properties APPLIED OPTICS, Vol. 46, No. 35, 10 December 2007 [3] Wang et al. 2006, Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy, Atmos. Chem. Phys., 6, 329–338, 2006

17–22 April 2016

## Vienna | Austria |

