A.-M. Blechschmidt¹, A. Richter¹, J. P. Burrows¹, L. Kaleschke², K. Strong³, N. Theys⁴, M. Weber¹, X. Zhao³, A. Zien^{1,*}, and K. I. Hodges⁵ ¹Institute of Environmental Physics, University of Bremen, Germany, ²Institute of Oceanography, University of Hamburg, Germany, ³Department of Physics, University of Toronto, Canada, ⁴Royal Belgian Institute for Space Aeronomy, Brussels, Belgium, ⁵Department of Reading, United Kigdom, *now at: Energy & Meteo Systems GmbH, Oldenburg, Germany

1 Introduction

Intense, cyclone-like shaped plumes of tropospheric BrO are regularly observed by the 31 March ~ 23:30 UTC 01 April ~ 21:30 UTC 02 April ~ 19:30 UTC UV-vis satellite instrument GOME-2/MetOp-A over Arctic and Antarctic sea ice in polar GOME-2 VCD BrO [10¹³ molec/cm²] spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brinecovered ice or snow to the atmosphere. This impacts on the oxidizing capacity and chemistry of the polar troposphere and may change its temperature and local weather, GOME-2 VCD BrO_{strato} as ozone is a major greenhouse gas. from BASCOE climatology [1013 molec/cm2] •High tropospheric BrO concentrations occur in two weather situations: -stable boundary layer, low wind speeds (closed reaction chamber, plumes away from GOME-2 VCD O3 genesis region explained by transport) [DU] Scheme by Jones et al. -unstable boundary layer, high wind speeds (2009) showing chemical (brine coated snow, frost flowers, sea salt reactions involved in the bromine explosion blown into troposphere) WRF tropopause height [km] •Cold temperatures favor bromine explosion sea ice, snow, frost flower Here, we make combined use of satellite retrievals and numerical model simulations to study the impact of polar weather systems on the bromine explosion. General characteristics of bromine explosion events linked to transport by polar weather MODIS false color images systems are derived based on a new detection method. 3 Climatology of satellite based BCTE detections Satellite observations, together with parameters used for GOME-2 tropospheric BrOretrieval Arctic north of 70°N Antarctic south of 60°S BrO plume spatially separated from dry conveyor belt (a dry, O_3 -rich lower stratospheric air stream) (Top) Frequency distributions and (bottom) tracks of BCTEs between 2007 and 2009 based on combining GOME-2 tropospheric BrO satellite retrievals with cyclone tracks (K. I. Hodges, University of Reading) from NCEP-CFSR mean sea level pressure model 4 Conclusions data •About twice as many cases in cycle, blowing snow production and recycling of BrO on aerosol surfaces Antarctic (70) compared to Arctic (27) •All events occurred over sea ice during polar spring

email: annebl@iup.physik.uni-bremen.de

A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

2 <u>Bro Cyclone</u> <u>Transport</u> <u>Event</u> – <u>Beaufort</u> <u>Sea</u>, <u>April</u> 2011

- •Fronts play an important role in generating tropospheric BrO in the lower troposphere
- •High wind speeds, vertical lifting and lower temperatures favor bromine activation
- •Strength and frequency of BCTEs determined by bromine sources (e.g. young sea ice), cyclone strength and frequency, which are all expected to change under global warming
- •Further studies needed to quantify the relative importance of surface production of BrO and brine coated snow and ice lifted by frontal systems, future changes of BCTEs as well as their impact on tropospheric chemistry

X2.383

5 References Blechschmidt et al. (2016): An exemplary case of a bromine explosion event linked to cyclone development in the Arctic, Atmos. Chem. Phys., 16, 1773-1788, doi:10.5194/acp-16-1773-2016. Zhao et al (2015): A case study of a transported bromine explosion event in the Canadian high arctic, J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023711. Jones et al. (2009): BrO, blizzards, and drivers of polar tropospheric ozone depletion events, Atmos. Chem. Phys., 9, 4639-4652, doi:10.5194/acp-9-4639-2009.

MODIS data and WRF model source code provided by: MODIS (http://modis.gsfc.nasa.gov/), WRF (http://www2.mmm.ucar.edu/wrf/users/)