Tropospheric Ozone based on satellite measurements of SCIAMACHY and GOME

A.Ladstätter-Weißenmayer, C. v. Savigny, B. Sierks, J. P. Burrows, A. Richter and F. Wittrock

> Institute of Environmental Physics, University of Bremen, P. O. Box 330440, D-28334 Bremen, Germany lad@iup.physik.uni-bremen.de

Introduction

Every summer important areas of forests and grasslands are burning in the tropics and emit into the atmosphere large amounts of precursors of tropospheric ozone (O_3), hydrocarbons, carbon monoxide (CO), oxygenated organics, including formaldehyde (HCHO), nitrogen oxides (NOx=NO+NO₂), sulfur dioxide (SO₂)) and aerosols. Tropospheric O_3 is subsequently photochemically produced in the presence of NO_x during the oxidation of CO and organic gases (volatile organic compounds (VOC)) including methane. Therefore SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) aboard ENVISAT [Noël et al., 2002] and GOME (Global Ozone Monitoring Experiment) aboard ESAERS-2 measurements [Burrows et al. 1993 and Burrows et al. 1999] were analysed and compared with results of O_3 -SHADOZ-sondes for the time period of July to December 2002 [Thompson et al. 1999] for the locations Nairobi (Kenya: 1.27 S, 36.8 E), Natal (Brazil: 5.42 S, 35.38 W), Ascension (7.98 S, 14.42 W) and American Samoa (14.23 S, 170.56 W) in view to the influence of the amount of tropospheric O_3 in the tropics.

First Results

SCIAMACHY

The SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) project is a German, Dutch and Belgian contribution to the ESA ENVISAT, which was launched on the 28th of February 2003. The instrument is a spectrometer designed to measure simultaneously sunlight, transmitted, reflected and scattered by the earth, atmosphere or surface in the ultraviolet, visible and near infrared spectral regions (e.g. 240 nm - 2380 nm) at moderate spectral resolution (0,2 nm - 1,5 nm dependent on channel).

Mathematical inversion of the measurements yields the amounts and distributions of the following trace constituents and parameters: O_3 , BrO, OCIO, CIO, SO₂, H₂CO, NO₂, CO, CO₂, CH₄, H₂O, N₂O, p, T, aerosol parameters (optical thickness, absorbing aerosol), cloud parameters (cloud cover, cloud top height and cloud optical thickness). A special feature of SCIAMACHY is the combined limb-nadir measurement mode, which enables the tropospheric column amounts of several trace gases to be determined.

Figure 1: ENVISAT in the Orbit [ESA]

Figure 1: ENVISAT in the Orbit [ESA]

Figure 4: O_3 -profiles calculated from SCIAMACHY-limb-measurements and compared to the profil based on SHADOZ- O_3 -measurements.

Figure 4: Comparison of tropospheric O_3 columns based on the combination of SCIAMACHY-GOME-data, GOME-results and SHADOZ- O_3 -measurements.

Conclusions

For the analysis of tropospheric O_3 the height of the tropopause was determined from the temperatureprofile of the radiosondes measurements as well as from the O_3 -profile measurements based on SHADOZ-data. Then the limb- O_3 -profiles based on SCIAMACHY-data were corrected in view to the tangent height. That means the profiles based on SCIAMACHY-limb-measurements were fitted on the SHADOZ-profiles. Therefore the maximum value of both measurements were used and fixed on the same height-level. So differences between -4.1-0.5 km have to be shifted.

The comparison for tropospheric O_3 (see fig. 4) based on (a) the difference of stratospheric O_3 (SCIAMACHY) from total O_33 (GOME), (b) on the tropospheric O_3 (GOME) and (c) on the tropospheric O_3 of the SHADOZ-O3-sondes measurements leads to deviations in a range of 10-40% compared to the results of the SHADOZ-sondes. One reason can be that the collection of the satellite data are around 10:00 a.m. and the launches of the sondes are often in the afternoon. Therefore different air masses were observed with different photochemical activities (see fig. 3).

GOME

Since 1995 GOME on board of the European satellite ERS-2 is measuring in the wavelength range of 240-780 nm with a spectral resolution of 0.2 to 0.4 nm. The main objective of GOME is the global measurement of O_3 columns, but other trace gases such as NO_2 , SO_2 , HCHO, BrO and OCIO can be retrieved from the spectra as well and vertical profiles of ozone can be obtained. Using the Differential Optical Absorption Spectrocopy (DOAS) technique, a number of atmospheric trace gases like, O_3 , NO_2 , BrO, OCIO, SO_2 and HCHO can be retrieved from the spectra. Under cloud free conditions GOME is able to measure tropospheric amount of some constituents.

Figure 2: GOME aboard ERS-2

Analysis

SCIAMACHY is measuring scattered sunlight in nadir and limb mode. Therefore global maps of the total ozone columns and in addition ozone profiles can be obtained. Whereas GOME is a nadir viewing spectrometer.

References

[Burrows, J. P., K. V. Chance, A. P. H. Geode, R. Guzzi, B. J. Kerridge, C. Muller, D. Perner, U. Platt, J.-P. Pommereau, W. Schneider, R. J. Spurr, H. Van der Woerd, "GOME Interim Science Report", edited by T. D. Guyenne and C. J. Readings, ESASP-1151 ISBN 92-9092-041-6, 1993

Burrows, J. P., M. Weber, M. Buchwitz, V. Rozanov, A. Ladstätter-Weißenmayer, A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, K.-E. Eichmann, M. Eisinger, and D. Perner: The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results, J. Atmos. Sci., 56, 151-175, 1999

Hoogen, R., V.V. Rozanov and J.P. Burrows, Ozone profiles from GOME satellite data: Algorithm description and first validation, J. Geophys. Res. 104, 8263-8280, 1999.

Ladstätter-Weissenmayer, A., J.P. Burrows, P. Crutzen, and A. Richter, GOME: Biomass burning and its influence on the troposphere, European Symposium on Atmospheric Measurements from Space, Proc. ESAMS'99, ESA-WPP-161, 369-374, 1999.

Noël, S., H. Bovensmann, M. W. Wuttke, J. P. Burrows, M. Gottwald, E. Krieg, A. P. H. Goede, and C. Muller, Nadir, limb, and occultation measurements with SCIAMACHY, Adv. Space Res., 29, (11), 1819-1824, 2002.

Thompson, A. M, and J. C. Witte, SHADOZ (Southern Hemisphere Additional Ozonesondes): A new data set for the Earth Science Community, Earth Observer, 11 (4), 27-30, 1999.

Thompson, A. M., J. C. Witte, R. D. Hudson, H. Guo, J. R. Herman, M. Fujiwara, Tropical Tropospheric

In this study the tropospheric O_3 columns were derived from limb-profiles based on SCIAMACHY data. That means the stratospheric amount based on SCIAMACHY limb-data were subtracted from the total amount based on GOME data.

For the determinition of tropospheric O_3 based exclusively on GOME data the GOME spectra were analysed using the Tropospheric Excess Method (TEM). The background amounts of the reference orbit was obtained by using the SHADOZ- O_3 -sondes measurements.

The validation of the tropospheric O_3 amounts using satellite based SCIAMACHY and GOME data was carried out with SHADOZ- O_3 -sondes results.

Acknowledgements

This project has been funded by: the German Federal Ministry of Education and Research (BMBF), the German Aerospace Agency (DLR), the German Research Council (DFG) and the State of Bremen and the University of Bremen.

www.doas-bremen.de