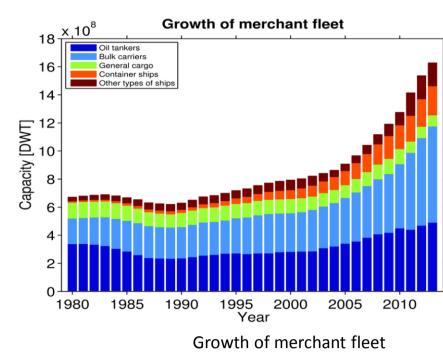
Monitoring Shipping Emissions with MAX-DOAS Measurements

André Seyler¹, Folkard Wittrock¹, Lisa Kattner^{1,2}, Barbara Mathieu-Üffing^{1,2}, Enno Peters¹, Andreas Richter¹, Stefan Schmolke², Norbert Theobald², and John P. Burrows¹

¹Institute of Environmental Physics (IUP), University of Bremen ²Federal Maritime and Hydrographic Agency (BSH), Hamburg

www.mesmart.de

1. Motivation

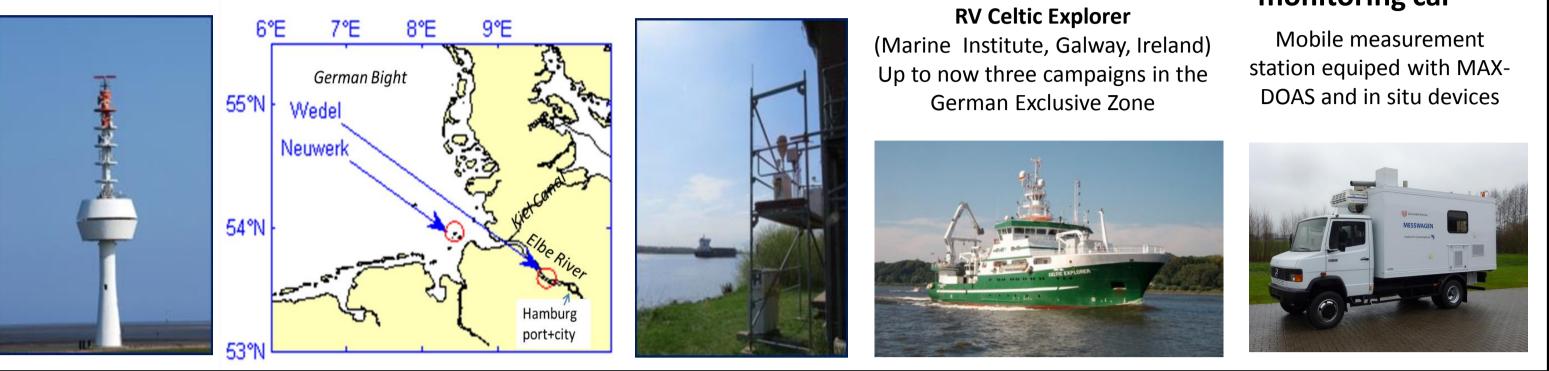

Shipping emissions:

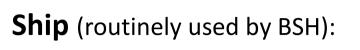
- Pollution components: carbon dioxide (CO₂), carbon monoxide (CO), nitrogen oxides (NO_x), sulfur oxides (SO_x), volatile organic compounds (VOCs), black carbon (BC), polycyclic aromatic hydrocarbons (PAH), particulate matter (PM)
- Impact on marine tropospheric chemistry, ecological and climatic effects (formation of ozone and aerosols, acidification, albedo)
- Health risk (pulmonary/cardiovascular) for people living in harbor cities and coastal regions
- Especially dangerous due to combustion products from heavy oil fuels with high sulfur content and strong soot emission
- Capacity of global merchant fleet has doubled since 2000 -> fraction of shipping emissions on global emissions is increasing

Political measures:

Convention of the International Marine Organization (IMO) for Prevention of Marine Pollution from Ships (MARPOL 73/78 Annex VI)

3. Operational area and platforms

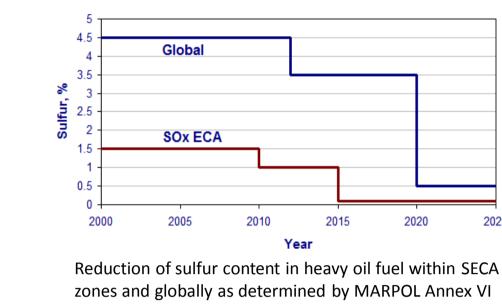

German Bight and Baltic Sea:

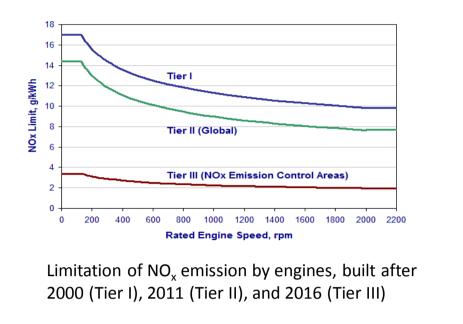

- German Exclusive Economic Zone, with 12-nm-zone und main shipping routes
- An area already covered with extensive research concerning water quality and oceanography by BSH

Stationary platforms:

Neuwerk: ~6 km to navigation channel in the mouth of Elbe

Wedel: ~0.5 km to navigation channel of Elbe river close to Hamburg, the biggest German harbor




In the near future: monitoring car

- (from http://unctadstat.unctad.org) Limitation of sulfur content in heavy oil fuels in Sulfur Emission Controlled Areas (SECA), starting Jan 2015 only 0.1% sulfur is allowed
- Establishment of general Emission Controlled Areas (ECA)
- Regulation of NO_x emissions from newly built marine engines

2. Objectives

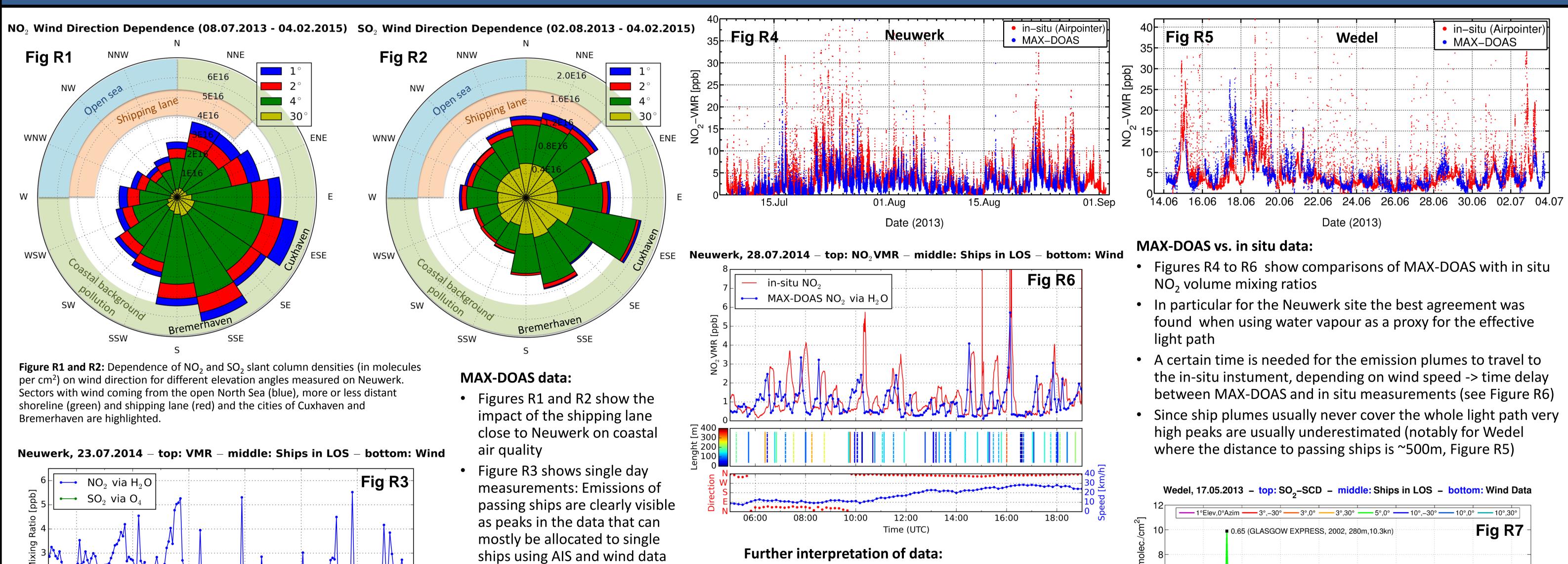
- **MeSMarT Me**asurements of **S**hipping Emissions in the **Mar**ine **T**roposphere a project coordinated by the University Bremen with support of the Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz Zentrum Geesthacht
- Assessment of different measurement systems such as remote sensing, in-situ, and passive sampling measurements as methods for long-term monitoring of shipping emissions in the North and Baltic Sea
- Establishment of remote sensing instruments like MAX-DOAS to support the surveillance of international emission regulations
- Improvement of ship emission data bases by measurements of the actual distribution of trace gases and aerosols related to ship emission
- Validation of satellite measurements and model data
- Description of the influence of ship emissions and its secondary products on the marine environment
- **Development of a concept for controlling ship emissions**

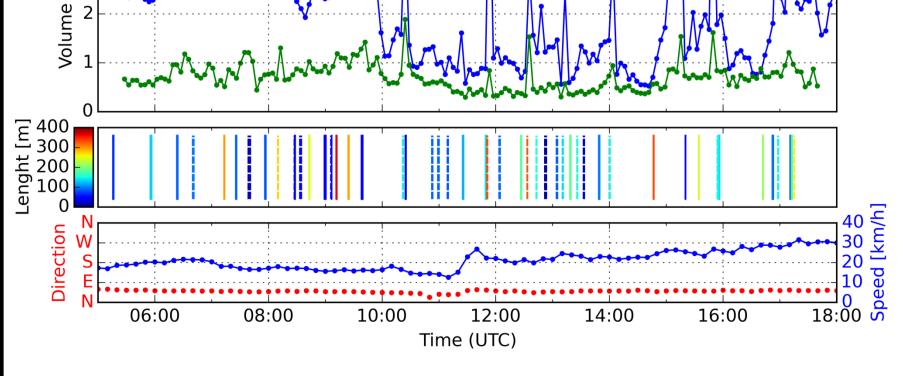
4. Methods

A. Passive remote sensing with Differential Optical Absorption Spectroscopy (DOAS) using **different platforms** (here only MAX-DOAS results from the ground are presented)

MAX-DOAS: Multi-axis observations from land and ship – different lines of sight provide a 3-dimensional picture of the trace gas of interest

UV/vis (300 to 570 nm) measurement of scattered sunlight, Differential Optical Absorption Spectroscopy – DOAS to get the averaged absorption along all contributing light paths -> Slant Column

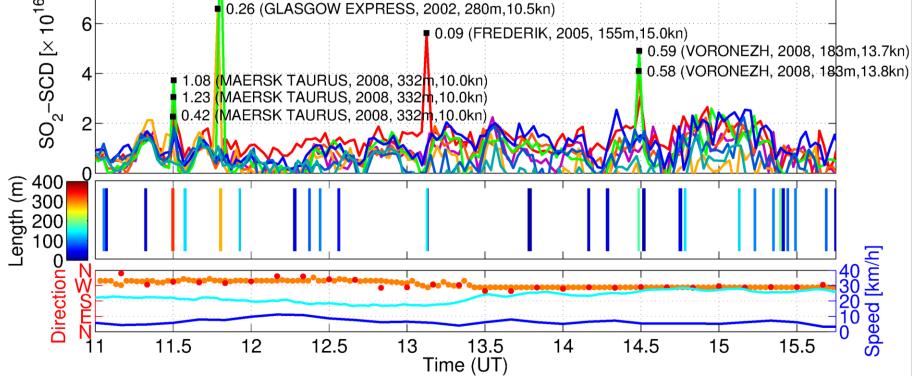

Further retrieval:


Using O₄ and H₂O as proxys for the effective light path to calculate **profile information (VMR) for NO₂ and SO₂** Detection limits NO₂ ~100 ppt, SO₂ ~200 ppt for typical viewing conditions, time resolution 1 to 5 min

B. Continuous in situ measurements of SO₂, NO_x, O₃, and CO₂: with trace gas monitor in ambient air

C. Complementary data: Meteorolocical data and AIS (Automatic Identification System) ship data

5. Selected Results and Discussion



Not every NO₂ peak has a corresponding SO₂ peak -> different sulfur contents in fuel

Figure R3: VMR, AIS and wind data for Neuwerk on Wednesday, 23 July 2014 On top: MAX-DOAS NO₂ and SO₂ VMRs In the middle: bars indicating that a ship is in the line-ofsight, solid bars: moves from left to right (west to east), dashed vice versa, colors representing ship length On the bottom: wind speed and direction

• Figure R7 illustrates exemplarily how the MAX-DOAS measurements can be used to estimate emissions from single ships

- NO₂ to SO₂ ratio (numbers close to the peaks) together with information on the engine load (speed) of the ships allows to estimate the fuel quality
- For the ships monitored on that day sulphur contents of 0.2 (Maersk Taurus) to 2% (Frederik) are assessed
- Changing numbers for one ship reflect the NO to NO₂ conversion within the plume

Acknowledgements	Selected references
 This project is funded by the "Federal Ministry of Transport and Digital Infrastructure" The authors thank the staff of the BSH Laboratory in Hamburg-Sülldorf for their assistance and their great support. Part of the instruments have been funded by the University of Bremen. The staff of the "Institut für Hygiene und Umwelt", Hamburg supports our work with instruments and the possibility to use their calibration units. The "Wasser- und Schiffahrtsamt Cuxhaven and Hamburg" provides support to establish the long-term monitoring stations on Neuwerk island and in Wedel 	 International Convention for the Prevention of Pollution from Ships (MARPOL) Annex VI Prevention of Air Pollution from Ships (entered into force 19 May 2005) http://:www.imo.org/regulation-13 http://www.imo.org/blast/mainframe.asp?topic_id=1709&doc_id=10262 Eyring, V., et al., SeaKLIM (Impact of Ship Emissions on Atmosphere and Climate), Final Report (2010) Moldanovà, J. et al., 2009. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment 43, 2632–2641. Berg, N. et al., Ship Emission Measurements by the Chalmers IGPS System during the Rotterdam campaign 2009, Report Diesch et al., Gaseous and particulate emissions from various marine vessel types, Atmos. Chem. Phys., 13, 3603–3618, 2013 Alföldy et al., Measurements of air pollution emission factors for marine transportation in SECA, Atmos. Meas. Tech., 6, 1777-1791, 2013 Kattner, L. et al., Monitoring compliance with sulphur content regulations of shipping fuel by in-situ measurements of ship emissions, ACP-2015-194 (Submitted)

DPG Frühjahrstagung Heidelberg 2015, UP 4.9 MeSMarT – Measurements of Shipping Emissions in the Marine Troposphere Contact: aseyler@iup.physik.uni-bremen.de