Tropospheric trace gas mapping by airborne imaging DOAS

Anja Schönhardt*, P. Altube, A. Richter, S. Krautwurst, K. Gerilowski, and J. P. Burrows

Institute of Environmental Physics, University of Bremen, Germany

*Email: anja.schoenhardt@iup.physik.uni-bremen.de

Objectives

Objectives: Measurements of tropospheric trace gases

→ NO₂ pollution mapping, identification of source regions and source strengths, satellite data validation, investigation of sub-pixel variability.

Advantages of aircraft measurements and imaging DOAS

- Higher spatial resolution ~100 m (down to <30 m) than satellite observations at useful spatial coverage
- Several viewing directions are observed at the same time, i.e. a broad stripe below the aircraft
- Less data is lost as cp. to scanning instruments, adjacent regions are viewed simultaneously

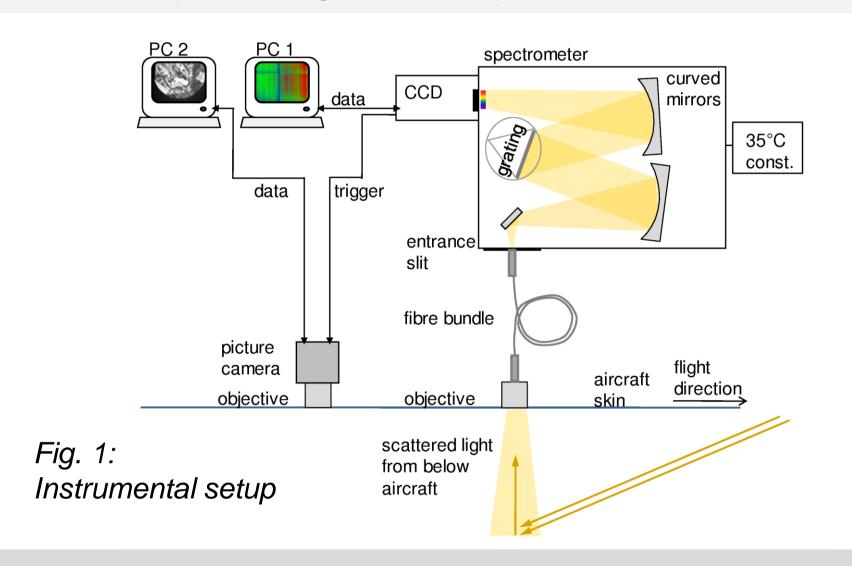
History of the IUP Bremen iDOAS instrument: development in 2011; laboratory measurements for optical characterisation; first test flights conducted during a flight campaign in summer 2011

iDOAS in the Polar-5 aircraft

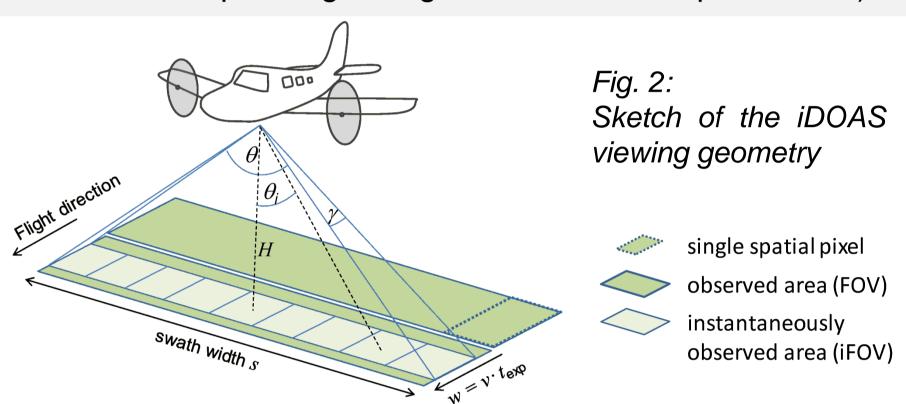
Polar-5

Registration: C-GAWI, Aircraft Type: Basler BT-67 / DC3 Length/Height/Span: 21 m / 5.2 m / 29 m 50-105 m/s; 100-19000 ft Speed & Altitude: AWI, Germany; Kenn Borek Air Ltd. Canada

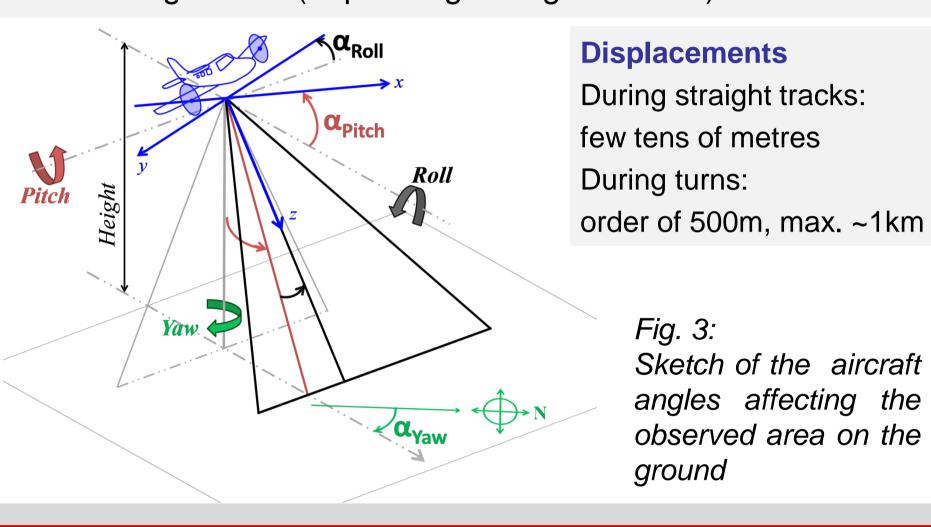
Polar-5 in Hangar at Bremerhaven Luneort airport



Instrumental setup and viewing geometry


Technical information and special features

- Wide angle objective and fibre bundle (35 fibres) as entrance optics
- Acton 300i imaging spectrometer, 600l/mm grating, blazed @500nm
- Spectral window 415 455nm; 0.7-1.0nm resolution
- Frame transfer (FT) CCD Detector, 512x512 pixels, 8.2x8.2 mm² Instrumental setup allows gap-free measurements (due to FT CCD) and flexible positioning in aircraft (due to sorted fibre bundle).


Observation and viewing geometry

- Two nadir ports: spectrometer objective and picture camera
- Geolocation information: from GPS sensor and gyrometer
- Viewing directions: max. 35 LOS (line of sight) from 35 fibres
- LOS after averaging across track: fibres combined to 9 LOS (θ_i)
- Field of view: ~48° across track (γ), ~3° along track (θ)
- Swath width: on the order of flight altitude H
- Exposure time t_{exp}: typ. 0.5s
- Spatial resolution: ~100 m (at 1km flight altitude, 9 viewing directions, depending on flight altitude and required SNR)

Computation of viewing geometry in flight

- Calculation of correct ground geolocation is important
- Consideration of the aircraft angles (pitch, roll and yaw) is required in addition to GPS position
- Corner coordinates and pixel center for each LOS calculated for start and end of exposure to determine the pixel area
- The displacements of the ground pixel due to aircraft motions can be significant (depending on flight altitude)

NO₂ vertical columns and emission flux calculations above a power plant

NO₂ retrieval above a power plant

• Black coal power plant (848 MW) at Ibbenbüren (52° 17.2' N, 7° 44.8' E)

• Large variation of NO₂ amounts across and along track are observed

• The NO₂ in the exhaust plume downwind of the power plant is clearly visible

• Slant columns of NO₂ retrieved by Differential Optical Absorption Spectroscopy

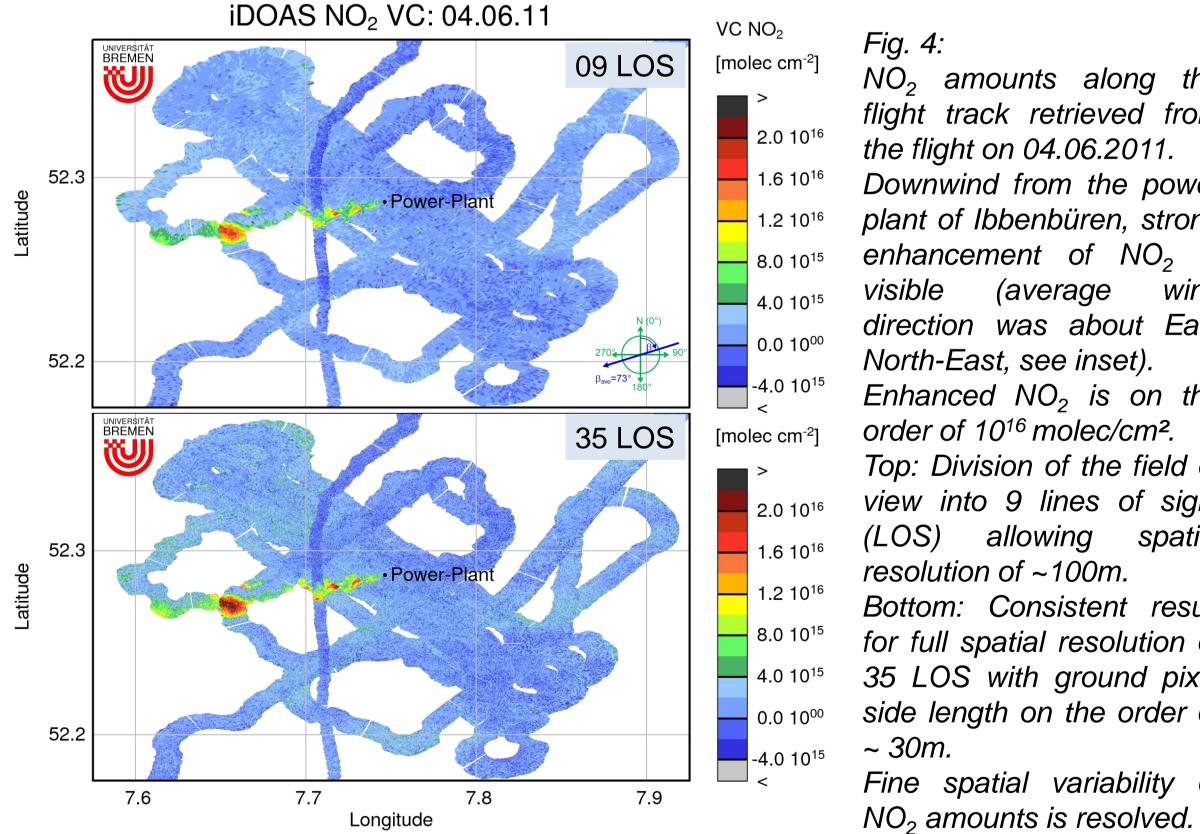


Fig. 4: NO₂ amounts along the flight track retrieved from the flight on 04.06.2011. Downwind from the power plant of Ibbenbüren, strong enhancement of NO2 is (average direction was about East North-East, see inset). Enhanced NO₂ is on the order of 10¹⁶ molec/cm². Top: Division of the field of view into 9 lines of sight allowing spatial resolution of ~100m. Bottom: Consistent result for full spatial resolution of 35 LOS with ground pixel side length on the order of ~ 30m. Fine spatial variability of

Retrieval Settings

Fitting window: 425 – 450 nm

Trace gases:

NO₂ (293K), O₃ (241K), O₄ (296K), H₂O (HITRAN) **Atmospheric effects:**

Ring (SCIATRAN calculated), intensity offset

Polynomial: quadratic

Reference I₀: rural scene from same LOS Slit function: individual for each LOS

Detection Limit for NO₂

Slant Column detection limit ~10¹⁵ molec/cm²; optical density rms on the order of 10⁻³

Air mass factors, AMF (SCIATRAN)

Rayleigh atmosphere, 1 km NO₂ box profile, 5% albedo, SZA and LOS dependence.

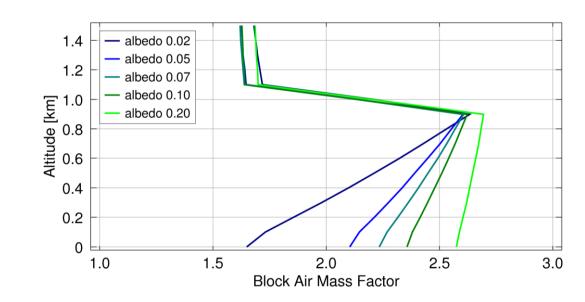


Fig.5: Block AMF for different albedos at 40° SZA and a flight altitude of 1.1 km. AMF differences between box profile and elevated gaussian plume depend on altitude (example cases ~10% effect).

NO₂ emission flux calculations

- based on Gaussian plume dispersion model
- mean wind speed & direction determined from NO₂ profile (Gaussian shape, cp. Fig.6) using COSMO-DE model wind data
- Flux calculations performed at different distances from stack

$$c(x, y, z) = \frac{Q}{2\pi\sigma_y \sigma_z u} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{z^2}{2\sigma_z^2}\right)$$
 Eq. 1: Gaussian distribution of concentration c

Dispersion of concentration c across plume (y) and over altitude (z) is taken into account, with source strength Q, wind speed u and spread σ_{v} and σ_{z} . Along the wind direction x only advection is considered.

$$Q \cong \int_{L} VC \cdot \vec{u} \cdot d\vec{l} \approx \sum_{i} VC_{i} \cdot \vec{u} \cdot d\vec{l}_{i}$$

Eq. 2: Derived using Gaussian divergence theorem

Approximation of source strength is achieved via discrete sum over the product of vertical columns (VC), wind speed and path length dl.

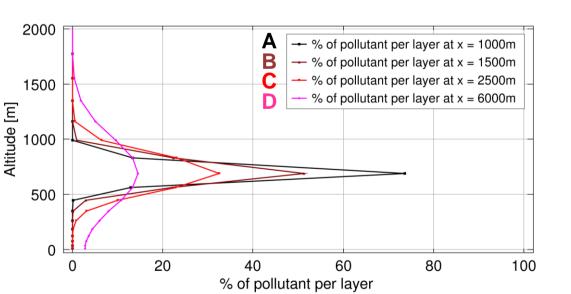
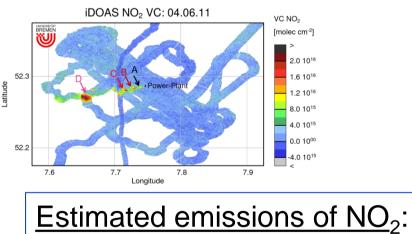



Fig. 6: Relative NO₂ altitude distribution inside the plume at three different distances from the stack. The profiles are used to determine mean wind speed and direction.

 $E_{NO2} \sim 2100-2400 \text{ T/a}$ Emissions of NO_x Using factor $NO/NO_2 = \frac{1}{4}$: $E_{NOx} \sim 2635-3000 \text{ T/a}$ (good agreement with E-PRTR)

NO₂ above inhabited and rural areas

Flight on 09.06.2011

NO₂ observations during two overflights over the city of Hamburg (same colour scale as Figs. 4 & 9.)

Hamburg:

NO₂ maxima ~1-2·10¹⁶ molec/cm² Enhanced NO₂ above the city and close to the airport

Strong spatial variability

Rural areas:

NO₂ overall much lower than closer to cities Not all NO₂ enhancements can be assigned to local sources → transported NO₂ is observed.

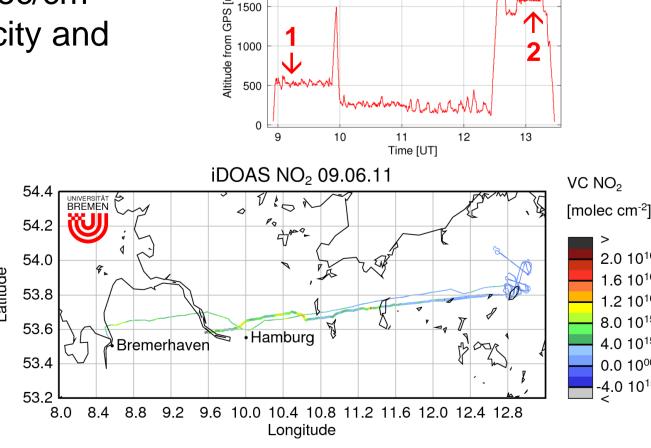


Fig.8: Flight altitude on 09.06.2011

Fig.9: NO₂ vertical columns observed on 09.06.2011

Summary and Outlook

Summary

- Imaging DOAS instrument shows good imaging quality and good performance for NO₂ measurements
- Aircraft pitch, roll and yaw angles are fully taken into account for correct ground geolocation
- NO₂ column amounts have been retrieved, pollution sources are observed
- NO₂ emission fluxes are calculated for power plant point source
- Further observations: large spatial NO₂ variability, consistent low NO₂ above rural areas, transported NO₂ **Activities for the future**
- Air mass factor consideration will be improved in future analyses
- Further dedicated campaigns will be conducted

Selected References

- P.Wang, et al: Measurements of tropospheric NO₂ with an airborne multi-axis DOAS instrument, Atmos. Chem. Phys., 5, 337-343, 2005.
- F. Lohberger, et al: Ground-based imaging differential opticalvabsorption spectroscopy of atmospheric gases, Vol. 43, No. 24, Applied Optics, 2005.
- K.-P. Heue, et al: Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument, Atmos. Chem. Phys., 8, 6707-6717, 2008.
- C. Popp et al.: High-resolution NO₂ remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer, Atmos. Meas. Tech., 5, 2211–2225, 2012.

Acknowledgements

support by the University of Bremen and by ESA through the TIBAGS project. Campaign support from AWI Bremerhaven, Martin Gehrmann and Franziska Nehring, is gratefully acknowledged. Thank you to the aircraft crew from Kenn Boreck, Canada.

The authors gratefully acknowledge financial

