Simultaneous observations of IO and BrO over the Antarctic from space

Anja Schönhardt^{*1}, A. Richter¹, M. Begoin¹, F. Wittrock¹, and J. P. Burrows^{1,2}

¹ Institute of Environmental Physics, University of Bremen, Germany ² Center for Ecology and Hydrology, Wallingford, United Kingdom *Email: anja.schoenhardt@iup.physik.uni-bremen.de

Iodine and bromine in the troposphere

Impact of iodine & bromine on tropospheric composition

- Strong ozone depletion potential via catalytic cycles
- Change of oxidation pathways of some atmospheric species

Iodine specific: New Particle Formation

- Nucleation of higher iodine oxides I_xO_v (e.g. I_2O_5 , I_2O_4)
- Possible growth to cloud condensation nuclei
- \rightarrow Impact on the radiation balance

Example of catalytic O_3 depletion (X=I,Br)

McFiggans

et al, 2004.

Nucleation procedure

 $BrO + Hg^0 \rightarrow Br + HgO$

SCIAMACHY and the trace gas retrievals

- **SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY**
- UV-Vis-NIR spectrometer onboard ENVISAT
- spectral range between 214 2400 nm
- sun-synchronous orbit at 800 km altitude
- geometries: nadir, limb, occultation
- typical ground pixel size 30 x 60 km²
- The trace gas retrievals

DPG 2010

UP 2.20

SCIAMACHY onboard ENVISAT, Monitoring the Changing Earth's Atmosphere, published by DLR, 2006. (ESA, artist's impression)

Bromine specific: Oxidation of gas-phase mercury

 \rightarrow Enhancement of the bioavailability of mercury

Release pathways of iodine & bromine

Iodine: Release pathways in Polar Regions not yet fully understood Biogenic release by certain types of macroalgae/phytoplankton: CH_2I_2 , $CHIC_1$, I_2 , etc \xrightarrow{hv} I Inorganic release, e.g. via surface reactions of O_3 with I^2 , and/or yet unknown pathways

Bromine: Release mainly via the inorganic bromine explosion mechanism

Net multi-phase reaction: $H^+ + Br^- + HO_2 + O_3 \rightarrow Br + H_2O + 2O_2$

Biogenic release (e.g., of CH₃Br) not directly important for sudden Polar BrO appearances

IO and BrO maps over the Antarctic

The maps below show the time series of simultaneous observations of IO and BrO from SCIAMACHY IO amounts are slant columns, BrO amounts are vertical columns using a stratospheric AMF. Therefore patterns remain comparable. Monthly means are averaged over four years of data; periods start at the beginning or middle of the month Averaging procedure: Each following map is shifted by a period of half a month Time period covered: September 2004 – March 2008

Method: Differential	O ptical A bsorption S pect	troscopy (DOAS)
Retrieval settings	ΙΟ	BrO
Fitting window:	416 to 430 nm	336 to 347 nm
Trace gases:	NO ₂ (223K)	NO ₂ (223 K)
	O ₃ (221K)	O ₃ (223 K, 273 K)
	IO (298K)	BrO (228 K)
Other features:	Ring effect, stray	/ light, polynomial
The absorption cross sections:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$7 \leftarrow 0$ $et al., 1988$ $8 \leftarrow 0$ $6 \leftarrow 0$ $4 \leftarrow 0$ 1.0 $5 \leftarrow 0$
	1.0 1.0 0.5 420 440 440 Wavelength [nm]	$3 \leftarrow 0$ 0.5 0.

Comparison of IO and BrO distributions

Similarities:

- Both species appear in Antarctic Spring above sea ice and coastal regions
- Occurrence on the shelf ice regions transport/recycling in both cases?
- \rightarrow aerosols/particulate iodine might permit transport and later re-emission **Differences:**

Discussion of sources and open questions

Organic sources for iodine ... might explain the observations Antarctic waters show high biological productivity Cold water diatoms produce organic iodine species (e.g. sea ice becomes more porous towards late spring: iodine release from phytoplankton might be facilitated)

Chlorophyll a concentration (mg / m³ Chlorophyll-a concentrations from

- Spatial and temporal distributions differ quite strongly
- IO above sea ice much later in the year than BrO
- Occurrence of IO and BrO above ice shelves during different times
- IO amounts above the continent during some periods, but no BrO
- BrO equivalent on both Hemispheres, IO not wide spread in Arctic (not shown)
- \rightarrow Different release pathways for both molecules
- \rightarrow Do these observations argue for mainly organic pathways for IO release?

• Different biospheres in Arctic/Antarctic might produce

the SeaWIFS mission composite; provided by NASA. High biological productivity is detected in the Weddell Sea.

different amounts and/or different species of organic iodine

Conclusion: Although IO and BrO are basically similar molecules, spatial and temporal

distributions differ significantly. \rightarrow Different underlying release pathways must exist.

BrO release is mainly inorganic. Supported by results above, IO may be mainly biogenic.

Selected References	Acknowledgements
 Wahner, A., et al., Chem. Phys. Lett. 152, 507, 1988. Alicke, B., et al., Nature, 397, 572, 1999. Afe, O. T., et al., Geophys. Res. Lett., 31, L24113, 2004. McFiggans, G., et al., Atmos. Chem. Phys., 4, 701–713, 2004. Gómez Martín, J. C., et al., J. Photochem. Photobiol. A, 176, 15–38, 2005. Carpenter, L., et al., Marine Chemistry, 103, 227–236, 2007. Saiz-Lopez, A., et al., Science, 317, 348, 2007. Simpson, W. R., et al., Atmos. Chem. Phys., 7, 4375–4418, 2007. Schönhardt, A., et al., Atmos. Chem. Phys., 8, 637–653, 2008. 	The authors gratefully acknowledge financial support by the University of Bremen and the DFG (through the SALT project), as well as ESA/ESRIN for providing the SCIAMACHY data and NASA for the SeaWIFS chlorophyll map.

see also: www.iup.uni-bremen.de/doas