MAX-DOAS Measurements of Shipping Emissions on Neuwerk

André Seyler¹, Folkard Wittrock¹, Lisa Kattner^{1,2}, Barbara Mathieu-Üffing^{1,2}, Enno Peters¹, Andreas Richter¹, Stefan Schmolke², Norbert Theobald², and John P. Burrows¹ ¹Institute of Environmental Physics (IUP), University of Bremen ²Federal Maritime and Hydrographic Agency (BSH), Hamburg

www.mesmart.de

1. Motivation

Shipping emissions:

- Pollution components: carbon dioxide (CO₂), carbon monoxide (CO), nitrogen oxides (NO_x), sulfur oxides (SO_x), volatile organic compounds (VOCs), black carbon (BC), polycyclic aromatic hydrocarbons (PAH), particulate matter (PM)
- Impact on marine tropospheric chemistry, ecological and climatic effects (formation of ozone and aerosols, acidification, albedo)
- Health risk (pulmonary/cardiovascular) in harbor cities and coastal regions
- Especially dangerous due to combustion products from heavy oil fuels with high sulfur content and strong soot emission
- **Capacity of global merchant fleet has doubled since 2000** -> fraction of shipping emissions on global emissions is increasing

Political measures:

Convention of the International Marine Organization (IMO) for Prevention of Marine Pollution from Ships (MARPOL 73/78 Annex VI) Limitation of sulfur content in heavy oil fuels in Sulfur Emission Controlled Areas (SECA), starting Jan 2015 only 0.1% sulfur is allowed Establishment of general Emission Controlled Areas (ECA) Regulation of NO_x emissions for newly built engines

3. Operational area and platforms

Stationary platforms: Wedel: ~0.5 km to navigation channel of Neuwerk: ~6 km to navigation Elbe river close to Hamburg, the biggest channel in the mouth of Elbe German harbor 55°N 54°N

Operational area: German Bight and Baltic Sea

Ship (routinely used by BSH):

Monitoring car:

RV Celtic Explorer (Marine Institute, Galway, Ireland) Up to now four campaigns in the German Exclusive Zone

Mobile measurement station equiped with MAX-DOAS and in-situ devices

2. Objectives

MeSMarT – Measurements of Shipping Emissions in the Marine Troposphere – a project coordinated by the University of Bremen with support of the Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz Zentrum Geesthacht

- Assessment of different measurement systems such as remote sensing, in-situ, and passive sampling measurements as methods for long-term monitoring of shipping emissions in the North and Baltic Sea
- Establishment of remote sensing instruments like MAX-DOAS to support the surveillance of international emission regulations
- Improvement of ship emission data bases by measurements of the actual distribution of trace gases and aerosols related to ship emission, validation of satellite measurements and model data
- Description of the influence of ship emissions and its secondary products on the marine environment
- **Development of a concept for controlling ship emissions**

4. Methods

A. Passive remote sensing with Differential Optical Absorption Spectroscopy (DOAS) using **different platforms** (here only MAX-DOAS results from the ground are presented)

MAX-DOAS: <u>Multi-axis</u> observations from land and ship – different lines of sight provide a 3-dimensional picture of the trace gas of interest

Detection:

UV/vis (300 to 570 nm) measurement of scattered sunlight, Differential Optical Absorption Spectroscopy – DOAS to get the averaged absorption along all contributing light paths -> Slant Column

Further retrieval:

Using O₄ and H₂O as proxys for the effective light path to calculate **profile information (VMR) for NO₂ and SO₂** Detection limits: NO₂ ~0.1 ppb, SO₂ ~0.2 ppb for typical viewing conditions, time resolution 1 to 5 min

- **B.** Continuous in situ measurements of SO₂, NO_x, O₃, and CO₂: with trace gas monitor in ambient air
- Complementary data: Meteorolocical data and AIS (Automatic Identification System) ship data

5. Selected Results and Discussion

MAX-DOAS measurements:

- Figures R1 and R2 show the impact of the shipping lane close to Neuwerk on coastal air quality
- > Enhanced background pollution from the shoreline and the cities of Cuxhaven and Bremerhaven
- \succ In sector from W to N: wind from the open North Sea \rightarrow all emissions coming from ships
- \succ The fraction of shipping emissions on the overall emissions is much higher for SO₂ than for NO₂
- Figures R3 and R4 show single day measurements: emissions of passing ships are visible as peaks

Influence of fuel sulfur content regulations:

- On the 1st of January 2015, the allowed sulfur content inside ECA decreased from 1.0% to 0.1%
- SO₂ measurements since then: no ship emission peaks visible anymore (see Fig. R5)
- SO₂ values below the MAX-DOAS detection limit (~0.2 ppb)
- Wind direction dependence: much less SO₂ from shipping

> Scanning horizontally: movement of ships and ship plumes can be studied (see Fig. R3) \succ Using AIS and wind data \rightarrow peaks can mostly be allocated to individual ships (see Fig. R4) \blacktriangleright Not every NO₂ peak has a corresponding SO₂ peak \rightarrow different sulfur content in fuel

NO₂ Wind Direction Dependence (08.07.2013 - 04.05.2015) **SO**₂ Wind Direction Dependence (03.08.2013 - 31.12.2014)

Figure R1 and R2: Dependence of NO₂ and SO₂ slant column densities (in molecules per cm²) on wind direction for different elevation angles measured on Neuwerk. The bars are not stacked, but plotted on top of each other, i.e. the highest values are measured for 1° elevation. Sectors with wind coming from the open North Sea (blue), more or less distant shoreline (green), shipping lane (red) and the cities of Cuxhaven and Bremerhaven are highlighted.

Comparison to in-situ data:

Fig R6

• Figures R7 to R9 show comparisons of MAX-DOAS with in situ volume mixing ratios

Acknowledgements	Selected references
This project is funded by the "Federal Ministry of Transport and Digital Infrastructure" The authors thank the staff of the BSH Laboratory in Hamburg-Sülldorf for their assistance and their great support. Part of the instruments have been funded by the University of Bremen. The staff of the "Institut für Hygiene und Umwelt", Hamburg supports our work with instruments and the possibility to use their calibration units. The "Wasser- und Schiffahrtsamt Cuxhaven and Hamburg" provides support to establish the long-term monitoring stations on Neuwerk island and in Wedel	 International Convention for the Prevention of Pollution from Ships (MARPOL) Annex VI Prevention of Air Pollution from Ships (entered into force 19 May 2005) <i>http://:www.imo.org/regulation-13</i> <u>http://www.imo.org/blast/mainframe.asp?topic_id=1709&doc_id=10262</u> Eyring, V., et al., SeaKLIM (Impact of Ship Emissions on Atmosphere and Climate), Final Report (2010) Moldanovà, J. et al., 2009. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment 43, 2632–2641. Berg, N. et al., Ship Emission Measurements by the Chalmers IGPS System during the Rotterdam campaign 2009, Report Gomez, L. et al, Long-path averaged mixing ratios of O₃ and NO₂ in the free troposphere from mountain MAX-DOAS, Atmos. Meas. Tech., 7, 3373-3386, 2014. Alföldy et al., Measurements of air pollution emission factors for marine transportation in SECA, Atmos. Meas. Tech., 6, 1777-1791, 2013. Kattner, L. et al., Monitoring compliance with sulphur content regulations of shipping fuel by in-situ measurements of ship emissions, ACPD, 15, 11031-11047

7th International DOAS Workshop (Brussels, 2015) MeSMarT – Measurements of Shipping Emissions in the Marine Troposphere Contact: aseyler@iup.physik.uni-bremen.de