Intercomparison of NO₂ satellite retrievals and spectral fitting

E. Peters¹, I. De Smedt², S. Beirle³, J. van Geffen⁴, T. Bösch¹, A. Hilboll¹, A. Richter¹, J. P. Burrows¹, M. Van Roozendael², T. Wagner³, K. F. Boersma⁴

1) Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany

2) Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

3) Max-Planck-Institute for Chemistry, Mainz, Germany

4) Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherland

Introduction

This work has been performed as part of the Quality Assurance for Essential Climate Variables project (QA4ECV, http://www.qa4ecv.eu). The project's objectives are to develop a Quality Assurance (QA) system for observational data products concentrating on six Essential Climate Variables (ECVs) and to generate multi-decadal satellite-derived global ECV records for which harmonized retrievals will be developed based on the community's best practice.

As part of this project, the agreement of NO₂ slant columns resulting from different DOAS retrieval codes is evaluated. Participating institutes and their DOAS retrieval codes are:

Systematic differences

- The NO₂ difference shows strong similarities to the intensity offset fit factor (**Fig. 4**)
- The intensity offset is implemented in different retrieval codes in a different way (IUPB and MPIC fit 1/I_{sun}, BIRA fits 1/I, KNMI omits the offset)

- Institute of Environmental Physics, University of Bremen (IUPB) [1]
- Belgian Institute for Space Aeronomy (BIRA-IASB) [2]
- Max-Planck-Institute for Chemistry, Mainz (MPIC) [3]
- Royal Netherlands Meteorological Institute (KNMI) [4]
- Linear fit on optical depth (OD)
- Non-linear intensity fit
- NO₂ slant columns from the GOME, SCIAMACHY, GOME-2, and OMI satellite instruments are planned to be intercompared. The intercomparison consists of
- a) Harmonized DOAS fit settings (agreed on in advance)
- b) Preferred DOAS fit settings (different for each group)
- For each sensor, 4 days of data are compared (different season, early/late in lifetime of the sensor). Here, first results from the OMI intercomparison is presented (Tab. 1).

Sensor	February	August	February	August	Tab. 1: Days included in the OM
ΟΜΙ	02 Feb 2005	16 Aug 2005	04 Feb 2013	04 Aug 2013	intercomparison

OMI data (harmonized settings)

Fit mode	Optical density (IUPB, BIRA, MPIC) Intensity (KNMI)
Fit window	405-465 nm [4]
DOAS polynomial	4th order (5 coefficients)
Cross-sections	O ₃ (223 K), NO ₂ (220 K), O ₄ , H ₂ O, Ring
Intensity offset correction	Yes (IUPB, BIRA, MPIC) No (KNMI)
Reference	Average solar spectrum

Tab. 2: Harmonized fit settings for OMI intercomparison

• The agreement of IUPB, BIRA, MPIC, and KNMI NO₂ retrievals was tested for harmonized DOAS

- A linear relation is found between offset fit factor and NO₂ difference if the offset correction is omitted (as KNMI does, **Fig. 5**).
- \rightarrow Which one is more correct? Does offset prevent or introduce misfit, i.e. does it compensate a real signal?
- Over clear water surfaces, the offset partially compensates liquid water Vibrational Raman Scattering (VRS)
- But: enhanced offsets coinciding with NO₂ disagreement also found over land (Fig. 4, bottom)
- \rightarrow Still under investigation (coincides with small intensities and low cloud cover, often surrounded by clouds)
- Fig. 5: Left: Offset intensity fit factor from IUPB retrieval (x-axis) vs. NO₂ slant columns, color-coded for different groups (y-axis). Right: IUPB offset (x-axis) vs. NO₂ slant column differences. A linear trend of the NO₂ difference (between IUPB and KNMI) with the IUPB offset fit factor is found.

SC NO2 [1015 Molek / cm2]

Fig. 4: Left: Fit factor of intensity offset correction in IUPB retrieval (circles indicate enhanced intensity offset not caused by VRS). Right: NO₂ slant column difference between IUPB and KNMI. Global maps (top) and zoom-in over China (bottom). Data from 02 Feb 2005.

Preferred settings and sensitivity studies

settings (Tab. 2).

 Typical NO₂ slant column differences (Fig. 1-3) are in the range of 10¹⁴ molec/cm² for OD fitting groups and 10¹⁵ molec/cm² between OD and intensity fits.

Korea, IUPB-BIRA NO₂: 3x10¹⁴ molec/cm², medium agreement).

Excellent correlation of > 99.6% (Fig. 2) except over the SAA in August is obtained. The correlation is slightly decreasing with the lifetime of the sensor.

Residua

Spatial distribution of NO₂ differences (Fig. 3): Most homogeneous between IUPB and KNMI as the intensity offset correction is almost the same. Cloud pattern and clear water surfaces (due to VRS) are visible in IUPB-BIRA and IUPB-KNMI for the same reason. Differences in IUPB-KNMI are one order of magnitude larger (intensity fit instead of OD fit) and stripes are visible (see also Fig. 4).

Fig. 2: Correlation coefficients, slope and offset from a linear regression analysis of NO₂ slant columns retrieved from different institutes (for all 4 days in Tab. 1). KNMI2 is an experimental fit mode based on OD (i.e. linear).

- NO₂ slant columns resulting from preferred fit settings have been intercompared in analogy to harmonized settings (Fig. 6)
- Correlation > 99% except over SAA (as expected, slightly worse than for harmonized settings)
- Correlation slightly decreasing with lifetime of the sensor (as already seen for harmonized settings)
- In addition, sensitivity tests based on the harmonized settings (Tab. 2) have been performed and summarized in Tab. 3

Fig. 6: Statistics (linear regression) for the NO₂ intercomparison using preferred settings (same as Fig. 2 but for preferred instead of harmonized settings).

Test performed	Difference observed		
Convolution per row vs fixed	Up to 2E13 (< 1%)		
Intensity offset (1/I vs 1/I _{sun})	2E14		
Including first order intensity offset	2E14		
Including liquid water	Up to 1E15 larger NO ₂ over oceans Recommendation: Include liquid water		

Tab. 3: Sensitivity tests performed on OMI data.

Summary and conclusions

- For OMI data, NO₂ slant columns from different DOAS retrieval codes by IUPB, BIRA, MPIC, and KNMI show excellent agreement if harmonized fit settings are applied (correlation coefficient > 99,6%).
- Largest differences of 1.5x10¹⁵ molec/cm² for individual pixels were found between intensity fitting (KNMI) and OD fitting groups (IUPB, BIRA, KNMI). Between OD fitting groups, largest differences for individual pixels are $2-3x10^{14}$ molec/cm².
- Systematic NO₂ differences originate from different treatment of the intensity offset correction. Over water, the intensity offset correction probably interferes with VRS. Over land, enhanced offset fit factors coinciding with NO₂ disagreements are still under investigation. Comparing preferred fit settings, the correlation is smaller than for harmonized settings but still > 99%. Sensitivity studies suggest a typical sensitivity of 2x10¹⁴ molec/cm² on the retrieved NO₂ slant columns if fit settings are slightly modified (treatment of offset correction etc.). Inclusion of liquid water has a larger impact of up to 1x10¹⁵ molec/cm² selectively over clear water surfaces. It is recommended to include the liquid water cross section in the 405-465 nm window.

Fig. 3: Spatial distribution of NO_2 slant column differences (data from 02 Feb 2005).

Acknowledgements

- This work was carried out within the EU-QA4ECV project. Financial support was allowed by the EU (FP7-SPACE-2013-1, Project No 607405).
- Many thanks to BIRA, MPIC and KNMI for provision of data which was used for the intercomparison and shown here.

Selected References

[1] A. Richter, Absorptionsspektroskopische Messungen stratosphärischer Spurengase über Bremen, 53°N. - PhD-Thesis, University of Bremen, June 1997 (in German).

[2] Danckaert, T., Fayt, C., Van Roozendael, M., De Smedt, I., Letocart, V., Merlaud, A., Pinardi, G: Qdoas Software User Manual, Version 2.1, 2012.

[3] Beirle, S., Sihler, H., and Wagner, T.: Linearisation of the effects of spectral shift and stretch in DOAS analysis, Atmos. Meas. Tech., 6, 661-675, doi:10.5194/amt-6-661-2013, 2013.

[4] van Geffen, J. H. G. M., Boersma, K. F., Van Roozendael, M., Hendrick, F., Mahieu, E., De Smedt, I., Sneep, M., and Veefkind, J. P.: Improved spectral fitting of nitrogen dioxide from OMI in the 405–465 nm window, Atmos. Meas. Tech., 8, 1685-1699, doi:10.5194/amt-8-1685-2015, 2015.

Email: Enno.Peters@iup.physik.uni-bremen.de