A UV NO₂ DOAS retrieval for satellite data from GOME-2/MetOp-A A possibility to detect NO₂ vertical distribution

Lisa K. Behrens^{*}, Andreas Hilboll, Andreas Richter, Enno Peters, and John P. Burrows

Institute of Environmental Physics/Remote Sensing, University of Bremen, Germany *Email: lbehrens@iup.physik.uni-bremen.de

Co-funded by the European Union

Motivation

- NO_2 is one of the most important air pollutants
- catalyses ozone production, causes summer smog, acid rain, and adds local radiative forcing
- NO_x emission sources and their horizontal distribution are well known from satellite \bullet measurements
- knowledge of the vertical NO₂ distribution is only limited \Rightarrow satellite observations from GOME-2 on board of EUMETSAT's MetOp-A are used

4 Regional NO₂ SC timeseries

- anthropogenic air pollution:
 - e.g., China: NO₂ signals in highly polluted areas are visible in both spectral ranges
- biomass burning:
 - e.g., Africa south of the Equator (ASE) and Africa north of the Equator (ANE)
 - ASE: visible in both spectral ranges
 - ANE: NO₂ signals clearly visible in the visible spectral range cannot be detected in the UV spectral range
- \Rightarrow possible reasons: NO₂ values are to small to be detected or NO₂ is close to the ground (soil emission)

to develop a new NO₂ retrieval for the UV spectral range

2 BAMF - NO₂ vertical sensitivity

- calculation of BAMF with the radiative transfer model SCIATRAN
- to investigate the different vertical sensitivities in the two wavelength regions, UV and vis
- 352nm (UV) and 438nm (vis), with a solar zenith angle of 50° , surface spectral reflectance 0.04 (UV) and 0.06 (vis) and a US standard atmosphere profile

 $\sum_{i} SC_{i} = \sum_{i} BAMF_{i} \times VC_{i}$

Figure 1: BAMF for UV and visible spectral range (left) and quotient of both BAMFs (right). BAMF diverge with altitude.

- the sensitivity for NO₂ above 9 km is higher in the UV compared to the visible spectral range
- below 9 km the sensitivity is clearly higher in the visible spectral range \Rightarrow vertical sensitivity from two NO₂ retrievals in different wavelength windows

3 UV NO₂ DOAS retrievals

 fit setting of NO₂ retrievals: 					 vis
		UV NO ₂ fit	vis NO ₂ fit	10 ¹ 2.0	
_	fitting window	342 – 361.5nm	425 – 450nm	— 0 1.5- and	

Figure 5: Time series for the UV and visible spectral range. Left: China (30 – 40°N, 110° – 125°E), middle: Africa south of the Equator (5 – 20°S, 10 – 40°E), and Africa north of the Equator $(0 - 10^{\circ}N, 15^{\circ}W - 40^{\circ}E).$

5 Comparison of NO₂ VCs

- with AMF calculations, we should get similar VCs for both NO_2 retrievals:
 - NO_2 VC derived from the UV and visible spectral ranges as well as from model data show a good agreement
 - differences are partly due to stratospheric correction: e.g., lower values over North America in satellite observations
 - larger noise in UV NO₂ VC is due to the higher fitting error in the UV \rightarrow Figure 2
 - large differences for example over China are due to errors in AMF calculation, possible reasons are:
 - vertical distribution of NO_2 in the model is not correct simulated
 - Aerosols are not considered in AMF calculation

UV	00	vis	

instrumental function

usage of data from 2007 to 2014 from GOME-2/MetOp-A

Zeta

- usage of pixels with cloud fraction smaller than 0.2 (FRESCO+ version 6)
- stratospheric correction: reference sector (180 210°E)
- larger fitting errors for the UV NO₂ than for the vis NO₂ retrieval (calculated for 5°S – 5°N, 150 – 210°E)
- the scatter of retrieved NO₂ SC over polluted areas is much smaller compared to the scatter of retrieved NO₂ SC over the Pacific

Figure 2: Scatter of retrieved

indicates retrieved accuracy

NO₂ SCs over region of

presumably no NO₂

for January 2008.

Figure 3: Tropospheric NO₂ SC for the UV spectral range (left) and for the visible spectral range (right) for January 2008. In some regions our new NO₂ retrieval agrees well with the common NO₂ retrieval from the visible spectral range. In the UV, well known NO₂ signals over highly polluted areas are observed (e.g., China), albeit at much lower levels than in the visible.

Figure 6: Tropospheric NO₂ VC for the UV spectral range (left) and for the vis spectral range (right) for January 2008.

Figure 7: A priori tropospheric NO₂ MACC model VC for AMF calculations (left) and the difference of NO₂ VC for the visible minus the NO₂ VC for the UV spectral range.

6 Summary & Outlook

Figure 4: UV NO₂ SC divided by vis NO₂ SC (left) and vis NO₂ SC minus UV NO₂ SC (right) for January 2008. On the right hand side large differences can be observed in China as well as over further industrialised areas. Similar areas are found on the left hand side. Here only values larger 10¹⁵ molec cm⁻² are plotted. From the quotient we could derive a vertical sensitivity. For lower values the NO₂ is probably located closer to the ground.

- we provide a NO₂ fit in the UV spectral range for GOME-2/MetOp-A satellite data
- pattern of SCs and VCs derived from the visible and UV spectral range agrees well
- NO_2 in the visible is more sensitive to the lower troposphere \Rightarrow possibility to derive vertical distribution of NO₂
- differences are mostly located in areas with high anthropogenic air pollution
- in future, we will try to improve the UV NO₂ retrieval and get further information on the NO₂ vertical distribution

References & Acknowledgement

- Richter, A., Begoin, M., Hilboll, A., and Burrows, J. P.: An improved NO2 retrieval for the GOME-2 satellite instrument, Atmos. Meas. Tech., 4, 1147-1159, doi:10.5194/amt-4-1147-2011, 2011.
- Richter, A. and J.P. Burrows, Tropospheric NO2 from GOME Measurements, Adv. Space Res., 29(11),1673-1683, 2002.
- Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitao, L., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thepaut, J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC team: The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073-4109, doi: 10.5194/acp-13-4073-2013, 2013.
- This study has been funded by the EU FP7 project Patnership with ChiNa on space DAta (PANDA, grant no. 606719)
- GOME-2 lv1 data were provided by EUMETSAT