

High resolution measurements of NO₂ by aircraft imaging DOAS

Anja Schönhardt*, A. Richter, A. Meier, P. Altube, K. Gerilowski, S. Krautwurst, J. P. Burrows

1. Introduction

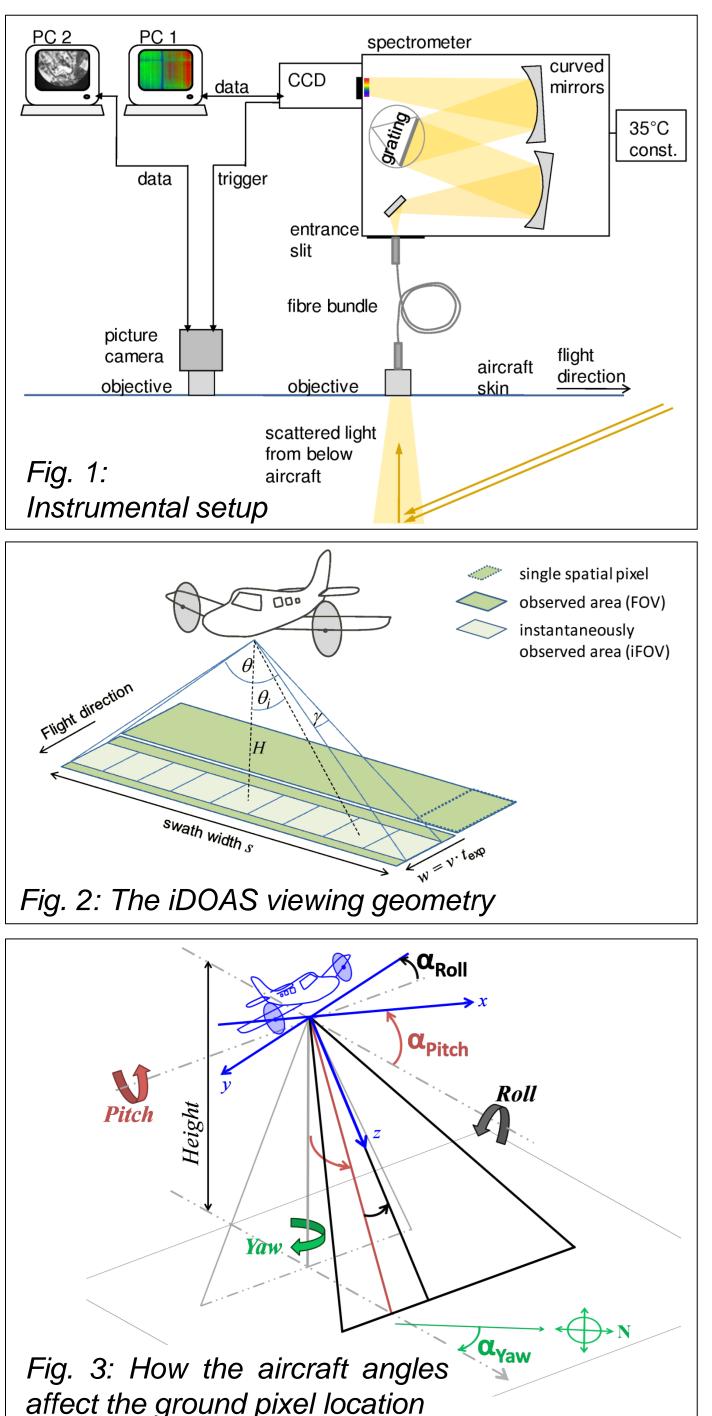
Objectives of aircraft imaging DOAS measurements:

- Retrieval of tropospheric trace gases, here nitrogen dioxide NO₂
- Mapping of NO₂ pollution sources, identification of source regions and strengths
- Satellite data validation, investigation of sub-pixel variability

Positive aspects of aircraft measurements and imaging DOAS

- High spatial resolution ~100 m (down to ~30 m) at useful spatial coverage
- Several viewing directions across track are observed simultaneously
- No data gaps occur along track

The iDOAS instrument in the Polar-5 aircraft


Aircraft Type: Length/Height/Span: Speed & Altitude: Owner & Operator:

Basler BT-67 / DC3 21 m / 5.2 m / 29 m 50-105 m/s; 100-19000 ft AWI, Germany; Kenn Borek Air Ltd. Canada

Photographs: (top) iDOAS installed in the Polar-5 aircraft

(bottom) Polar-5 in the hangar at Bremerhaven regional airport 2. Instrumental setup and viewing geometry

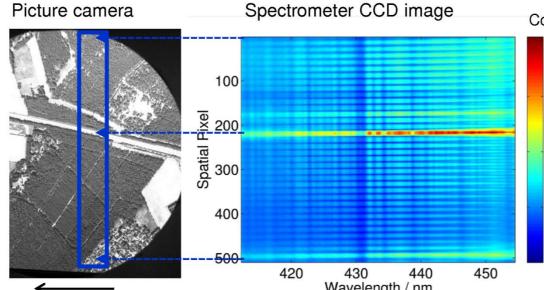
Technical information

- Wide angle objective and fibre bundle (35 fibres) as entrance optics
- Acton 300i imaging spectrometer
- Grating 600I/mm, blazed @500nm
- Spectral window 412 453nm
- Spectral resolution 0.7 1.0nm
- Frame transfer (FT) CCD Detector, 512x512 pixels, 8.2x8.2 mm² →Gap-free measurements (due to FT
- and flexible positioning in CCD) aircraft (due to sorted fibre bundle)

Viewing geometry

- 2 nadir ports: spectrometer & camera
- Geolocation: from GPS & gyrometer
- Viewing directions: max. 35 (typ. 9) lines of sight, (LOS, θ_i) from 35 fibres
- Field of view: ~48° across track (θ)
- Swath width: ~order of flight altitude H
- Exposure time t_{exp}: typ. 0.5s
- Spatial resolution: 30m ... 100m

Computation of ground pixel location


- Consideration of the aircraft angles (pitch, roll and yaw) is required in addition to GPS position for correct determination of the geolocation
- Displacements of the ground pixel due to aircraft motions can be significant

Universität Bremen

3. Imaging quality and NO₂ retrieval quality

Demonstration of imaging quality

The imaging quality is investigated by the recorded intensity on the spectrometer CCD image. Differently bright ground scenes are distinguished.

Wavelength / nm Flight direction Fig. 4: The blue box (left) marks the field of view of the spectrometer. Bright scenes such as roads are identified by higher intensity in single glass fibres, i.e. single LOS, on the CCD (right).

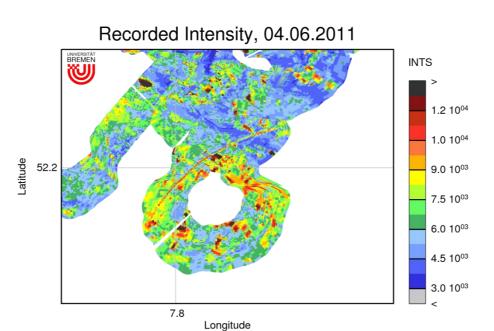
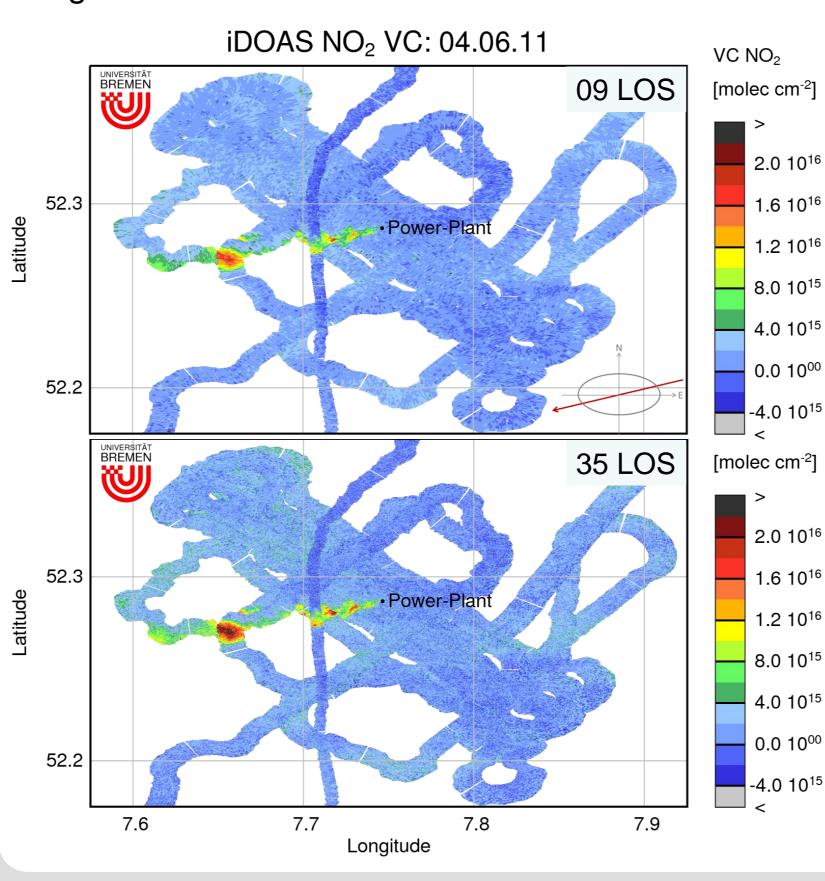



Fig. 5: Taking into account the aircraft angles 3), is also (Fia. imaging successful during tight curves, and streets are mapped continuously and in the correct location.

4. NO₂ vertical columns and emission flux calculations above a power plant

NO₂ retrieval above a power plant

- Black coal power plant (848 MW) at Ibbenbüren, Germany (52°17'N, 7°45'E)
- Slant columns of NO₂ retrieved by Differential Optical Absorption Spectroscopy
- Large variability of NO₂ amounts across and along track is observed
- The NO₂ in the exhaust plume downwind of the power plant is clearly visible
- Transects through the plume are used for emission flux estimations
- High resolution results with 35 LOS are consistent with the 9 LOS results

amounts along the flight track retrieved from the flight on 04.06.2011. Downwind from the power plant of Ibbenbüren, strong enhancement of NO₂ is wind Average direction was about East North-East, see inset. Enhanced NO_2 is on the order of 10¹⁶ molec/cm² with maxima > $2 \cdot 10^{16}$ molec/cm². Top: Division of the field of view into 9 lines of sight (LOS) allowing spatial resolution of ~100m. Bottom: Consistent result for full spatial resolution of 35 LOS with ground pixel side length on the order of around 30m. Fine spatial variability of NO₂ amounts is resolved.

5. Summary & Outlook

Summary

- The imaging DOAS instrument shows good imaging quality and good performance for NO₂ measurements • Aircraft pitch, roll and yaw angles are fully taken into account for correct ground geolocation
- NO₂ column amounts have been retrieved, pollution sources are observed (power plant, cities, etc)
- For typical situations (geometry, albedo, SZA), spatial resolution of 30 m (along and across track) is achieved • Further findings: Large spatial NO₂ variability and consistent NO₂ retrieval results for different LOS divisions • NO₂ emission fluxes are calculated for a power plant point source in agreement with emission reports **Activities for the future**
- Air mass factor consideration will be refined in future analyses
- Further dedicated campaigns will be conducted with the imaging DOAS instrument above pollution sources

Institute of Environmental Physics, University of Bremen, Germany *Email: schoenhardt@iup.physik.uni-bremen.de

Retrieval Settings for NO₂ columns Fitting window: 425 – 450 nm Trace gases: NO₂ (293K), O₃ (241K), O₄ (296K), H₂O (HITRAN) Atmospheric effects: Ring (SCIATRAN calculated), intensity offset **Polynomial:** quadratic **Reference I**₀: rural scene from same LOS **Slit function:** individual for each LOS **Detection Limit for NO**₂

NO₂ detection limit on the order of 3.10¹⁵ molec/cm² Optical density RMS: on the order of 10⁻³ for a single measurement of 0.5s and an individual LOS.

Fig. 6: Example retrieval result from 04.06.11 at 10:11:47 UT for the central viewing direction from 5 0.002 division into 9 LOS. The scaled NO₂ cross section (blue) and the NO_2 fit (black) are shown.

Example retrieval result:

Slant Colu Vertical Co **Residual F**

Fig. 7: NO₂ vertical column

Air mass factors,

AMF (SCIATRAN calculations) Rayleigh atmosphere, 1 km NO₂ box profile, 5% albedo, SZA and LOS dependence.

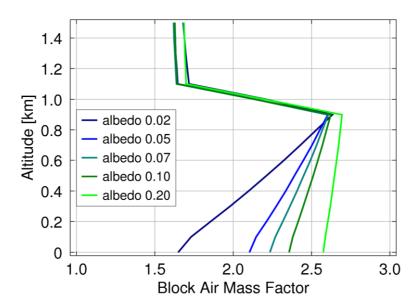
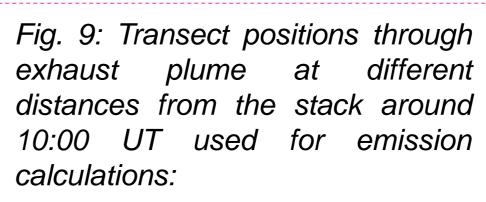
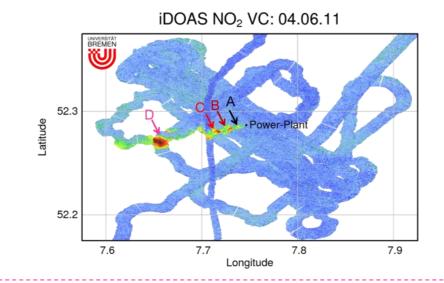
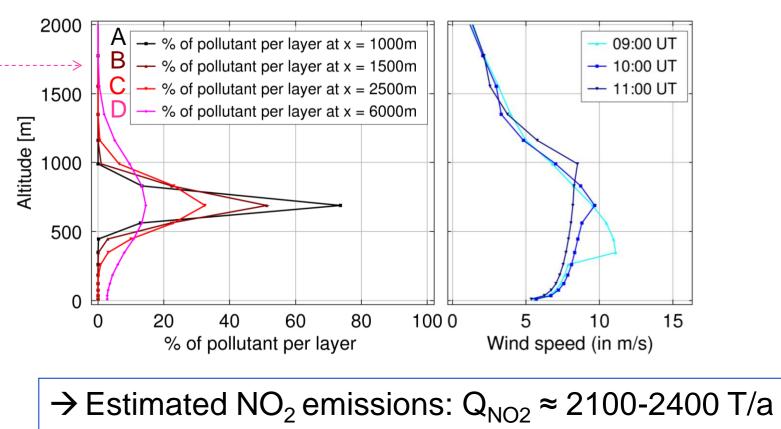




Fig.8: Block AMF for different albedos at 40° SZA and 1.1km flight altitude. AMF differences between box profile and elevated Gaussian plume: ~10%.

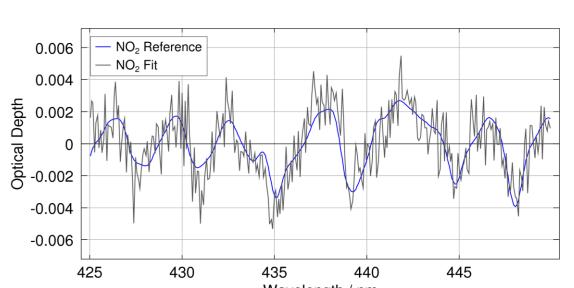

NO₂ emission flux calculations

$$c(x, y, z) = \frac{Q}{2\pi\sigma_y \sigma_z u} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \exp\left(-\frac{z^2}{2\sigma_z^2}\right)$$

Dispersion of concentration c across plume (y) and over altitude (z) is taken into account, with source strength Q, wind speed u and spread σ_v and σ_z . Along the wind direction *x* only advection is considered.

$$Q \cong \int VC \cdot \vec{u} \cdot d\vec{l} \approx 2$$

Approximation of source strength is achieved via discrete summation over the product of vertical columns (VC), wind speed and path length dl.


Acknowledgements

The presented work is financially supported by the University of Bremen. Campaign support from AWI Bremerhaven, Martin Gehrmann and Franziska Nehring, is gratefully acknowledged. Thank you to the aircraft crew from Kenn Boreck, Canada. COSMO-DE model data is provided by the German weather service DWD. Radiative transfer calculations are performed with the IUP Bremen SCIATRAN model, thanks to V. Rozanov.

Selected References

- Atmos. Chem. Phys., 5, 337–343, 2005.

DOAS-WS August 2013 Boulder, CO

ımn:	$SC(NO_2) = (4.0 \pm 0.1) \times 10^{16} \text{ molecules/cm}^2$
olumn:	$VC(NO_2) = (1.8 \pm 0.1) \times 10^{16} \text{ molecules/cm}^2$
RMS:	RMS _{res} = 1.5 x 10 ⁻³ (optical depth)

The stated error here is the fitting uncertainty.

Detection limit using 2 x RMS_{res} as criterion:

 $VC_{lim} = 3.6 \times 10^{15} \text{ molec/cm}^2$

(for SZA = 40°, 5% ground reflectance, 1km NO₂ box profile)

• Based on Gaussian plume dispersion model

 Mean wind speed & direction determined using COSMO-DE model wind data and weighting by NO_2 profile (Gaussian shape, cp. Fig.10) • Flux calculations are performed at different distances from the stack

> Eq. 1: Gaussian distribution of concentration c

$\sum VC_i \cdot \vec{u} \cdot d\vec{l}_i$

Eq. 2: Derived using Gaussian divergence theorem

> Relative NO₂ 10: altitude distribution inside the plume at four different distances from the stack *(left) and wind speeds from* COSMO-DE model NO₂ profiles are (right). used as weighting factors to determine mean wind speed and direction.

→ Emissions of NO_x (using NO/NO₂ ≈ $\frac{1}{4}$) : Q_{NOx} ≈ 2600-3000 T/a → Results are in agreement with E-PRTR[#] (1910-3280 T/a in different years) [#]European Pollutant Release and Transfer Register

• P. Wang, et al: Measurements of tropospheric NO₂ with an airborne multi-axis DOAS instrument,

• F. Lohberger, et al : Ground-based imaging differential optical absorption spectroscopy of atmospheric gases, Vol. 43, No. 24, Applied Optics, 2005.

• K.-P. Heue, et al : Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument, Atmos. Chem. Phys., 8, 6707–6717, 2008.

• C. Popp et al.: High-resolution NO₂ remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer, Atmos. Meas. Tech., 5, 2211–2225, 2012.