A new airborne imaging DOAS instrument development and first measurements

Anja Schönhardt*, A. Richter, S. Krautwurst, K. Gerilowski, F. Wittrock, and J. P. Burrows Institute of Environmental Physics, University of Bremen, Germany *Email: anja.schoenhardt@iup.physik.uni-bremen.de

Objective and Motivation

Objectives

Measuring and mapping of tropospheric trace gases, esp. NO₂ (pollution mapping), identification of source regions and source strengths, satellite data validation.

Why aircraft measurements?

Link between ground based observations and satellite measurements.

Good spatial resolution ~ 100 m, at useful spatial coverage.

Why imaging DOAS?

Several viewing directions are observed at the same time, i.e. a broad stripe below the aircraft.

Advantage: less data is lost as cp. to scanning instruments, adjacent regions are viewed simultaneously. Disadvantage: reduction in signal-to-noise as the recorded light is divided into several individual spectra **Status:** The imaging DOAS instrument has been developed very recently. Laboratory measurements have been performed to characterise the instrument, first test in flight have been conducted during a flight campaign in June 2011. Results are therefore early and preliminary.

The Polar-5 aircraft

Polar-5 Registration Aircraft Type Length Height Wingspan Speed Altitude (no pressurised cabin) Flight duration (depending on payload)

C-GAWI Basler BT-67 / DC3 21 m 5.2 m 29 m 50-105 m/s 100-19000 ft

3-8 h

Owner:	AWI, Germany
Operator:	Kenn Borek Air Ltd., Canada

Polar-5 in Hangar Bremerhaven, Luneort

Instrumental setup

Imaging DOAS instrumer	Schematic setup	
Spectral window	420 – 460 nm	Spectromete
Spectral resolution	0.7 – 1.0 nm	
(smaller in central viewing		
Grating	600 l/mm	
Detector size	512x512 pixels, 8.2x8.2 mm ²	9 atti
Slit width	100 µm	
Power consumption	< 400 W	
Power Supply	230VAC via UPS	slit
	or 28VDC via Inverter and UPS	fibre bundle
Temperature stablised at	35 C (spectrometer unit only)	35 fibres imaged onto
Observation and viewing geometry		slit/CCD

- Two nadir ports: spectrometer and 2nd port for picture camera • Geolocation information from GPS sensor and gyrometer
- max. 35 viewing directions (LOS, line of sight), 35 fibres imaged onto CCD, here combined to 9 LOS
- Field of view ~48 across track, ~3 along track
- Spatial resolution e.g. ~100 m (at ~1km flight altitude and 9)

spectrometer objective (left) DOAS instrument Imaging

LOS 1

LOS 2

LOS 3

LOS 4

LOS 5

LOS 6

LOS 7

LOS 8

LOS 9

-10.9

- 5.6

0.1

5.3

10.7

16.2

21.5

by higher intensity in the spectrometer image, demonstrating

Sample flight and measurements

Target area:

Ibbenbüren (52° 17.2' N, 7° 44.8' E) Coal mining area and Black coal power plant Power generated: 848 MW

View of the power plant taken by the picture camera at overflight.

Flight track on the 04.06.2011, going from Bremerhaven to Ibbenbüren, tight flight pattern above target area and back.

Altitude profile of the flight, typical flight altitude was ~1100m.

NO₂ retrieval

Retrieval Settings

Fitting window Trace gases Atmospheric effects Polynomial Reference I_0 Slit function

425 – 450 nm NO₂ (293K), O₃ (241K), O₄ (296K), H₂O (HITRAN) Ring (SCIATRAN calculated), constant stray light quadratic

from same viewing angle, rural scene with low NO₂ content individual slit function for each viewing direction

Detection Limit

• Depends on integration time (typ. 0.5 s exposure time, binning leads to slightly larger pixels) • For 2s, the detection limit lies around 10¹⁵ molec/cm², optical density rms is on the order of 10⁻³ \rightarrow Trade-off between ground spatial resolution and signal-to-noise ratio

Summary and Outlook

- A new imaging DOAS instrument for aircraft measurement has been developed and has been tested in some first technical flights. Performance was overall stable.
- Imaging quality is good, slit function remains consistent along spectral axis.
- Very early results from campaign in June 2011 show promising measurement quality.
- NO₂ column amounts have been retrieved, pollution sources can be seen.
- Scattering on the NO₂ amounts is quite large, data averaging may further improve SNR.

Longitude

Time series of NO_2 from entire flight (top) and for a selection (bottom). Spikes of NO₂ seen in the long time series are real enhancements as can be seen in the example. Large amounts, e.g. around 10.20h were captured when passing through the plume downwind of Ibbenbüren city and power plant.

NO₂ amounts along the flight track retrieved from the flight on 04.06.2011. Downwind from the power plant Ibbenbüren, strong enhancement of NO_2 is visible. Enhanced NO₂ is on the order of 10^{16} molec/cm². The width of the flight track depends on flight altitude, narrower lines correspond to lower flight altitude.

Universität Bremen

<u>Activities for the future:</u>

- Take pitch and roll angles precisely into account to improve geolocalisation of observations
- Create clean air sector reference spectrum as background I_0 , instead of rural air sector currently used
- Accurate consideration of air mass factor
- Dedicated measurements, e.g., for pollution mapping will be planned as soon as flight options arise.

Selected References

- P.Wang, et al: Measurements of tropospheric NO₂ with an airborne multi-axis DOAS instrument, Atmos. Chem. Phys., 5, 337–343, 2005.
- F. Lohberger, et al : Ground-based imaging differential opticalvabsorption spectroscopy of atmospheric gases, Vol. 43, No. 24, Applied Optics, 2005.
- K.-P. Heue, et al : Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument, Atmos. Chem. Phys., 8, 6707-6717, 2008. •N. Bobrowski, et al : IDOAS: A new monitoring technique to study the 2D distribution of volcanic gas emissions. J.of Volcanology and Geothermal Res., 150 (2006) 329-338.

Acknowledgements

The authors gratefully acknowledge financial support by the University of Bremen and by ESA through the TIBAGS project,. Campaign support from AWI Bremerhaven, Martin Gehrmann and Franziska Nehring, is gratefully acknowledged. Thank you to the aircraft crew from Kenn Boreck, Canada.

www.doas-bremen.de