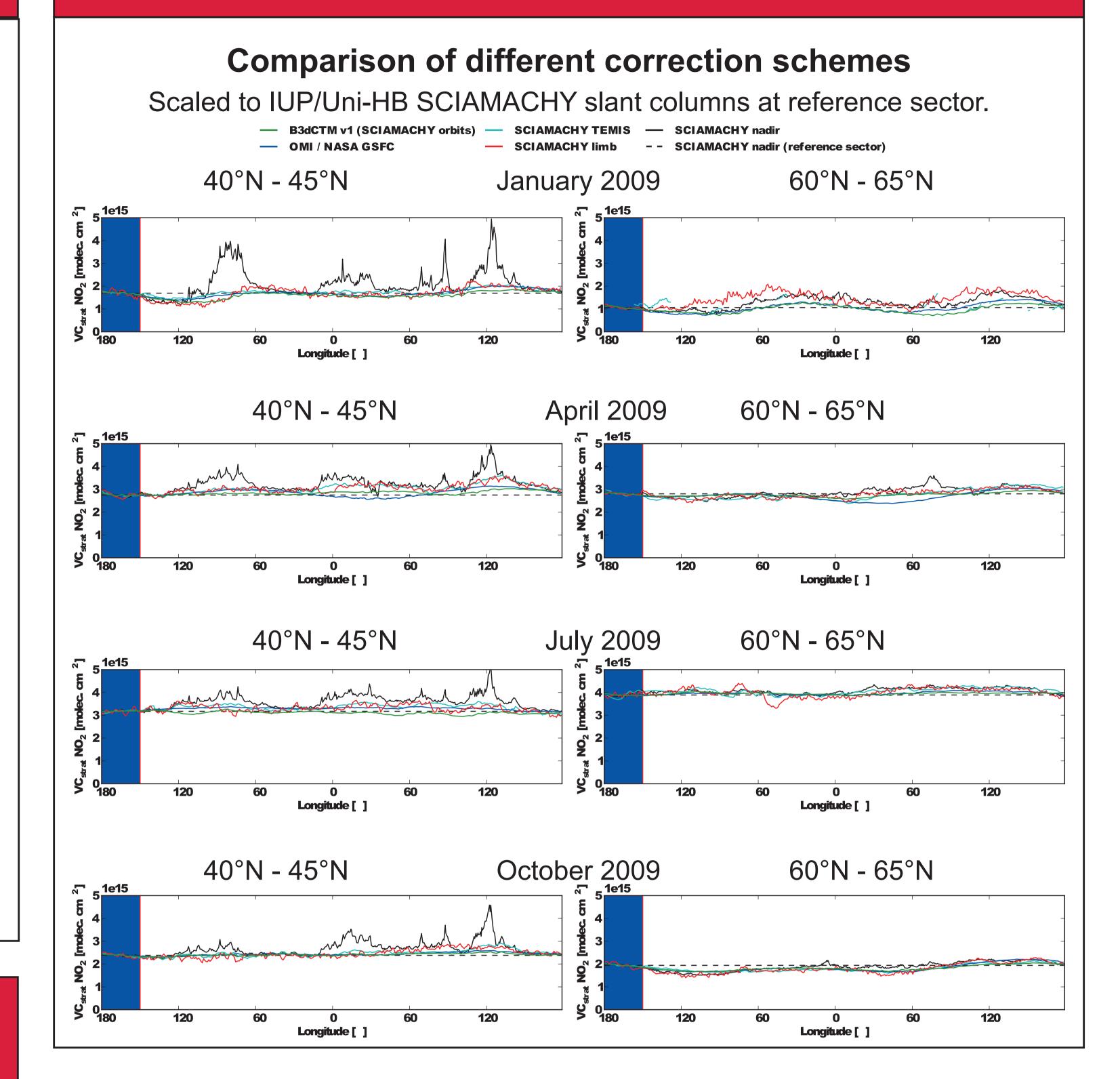
Intercomparison of different stratospheric correction schemes for the retrieval of tropospheric nitrogen dioxide columns from satellite

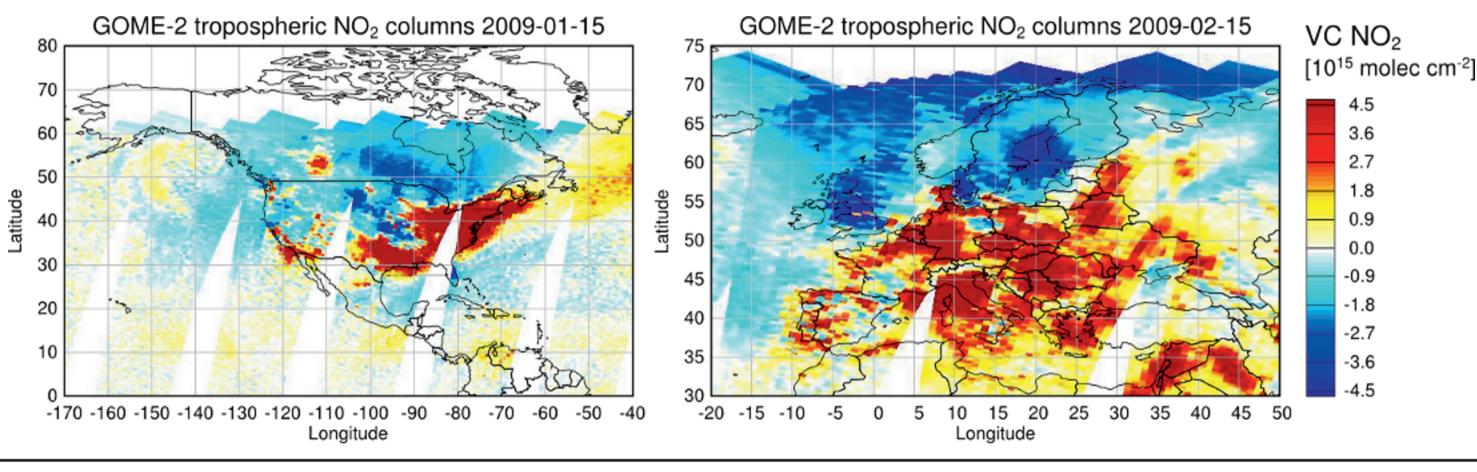

Andreas Hilboll (hilboll@iup.physik.uni-bremen.de), Andreas Richter, and John P. Burrows Institute of Environmental Physics / Remote Sensing, University of Bremen, FB 1, P.O. Box 330440, D-28334 Bremen


Introduction

The retrieval of tropospheric NO₂ from satellite

- measures a combined signal from both stratosphere and troposphere.
- For investigating tropospheric NO₂ (e.g. to estimate emissions), the stratospheric contribution must be taken into account.

Longitudinal variability



The reference sector method

- is the most simple method to account for this stratospheric signal.
- assumes that
 - the signal measured over the Pacific Ocean (180W 150W) originates from the stratosphere only.
 - there are no longitudinal changes in stratospheric NO₂.
- shows reasonable results over many areas.

However

- both assumptions are not entirely correct.
- This leads, inter alia, to negative tropospheric NO₂ in many areas.

Stratospheric NO, from model data

Bremen 3d Chemistry and transport model (B3dCTM)

- model of stratospheric chemistry
- driven by ECMWF ERA Interim meteorological data
- runs on 28 isentropic surfaces from 330 to 3402 K (about 10 to 65 km)
- horizontal resolution 2.5° x 3.75
- vertical resolution from ~ 1km (lower stratosphere) to ~ 4km (at ~ 60km)
- timestep 30 minutes
- described in *B.-M. Sinnhuber et al.* (2003) and *M. Sinnhuber et al.* (2003)

Accounting for stratospheric NO₂ using B3dCTM data

- For each latitude bin, calculate average satellite total slant column over the reference sector
- For each satellite pixel:
 - interpolate model data in space and time
 - apply stratospheric air mass factor to derive stratospheric slant column
- For each latitude bin, calculate additive offset of model minus satellite over the reference sector
- For each satellite pixel, subtract the appropriate offset from the model data

SCIAMACHY limb measurements

Results / Conclusions

- Results for southern hemisphere are comparable to northern hemisphere (not shown)
- Especially in winter, stratospheric NO_2 varies strongly (+/- 20%) with longitude.
- In comparison to both B3dCTM and SCIAMACHY limb data, using the reference sector method neglects many features found in stratospheric NO₂ data, leading to large errors in the tropospheric vertical columns, especially over rural regions.
- Stratospheric products derived from model data alone (B3dCTM, NASA GSFC) show smallest longitudinal variability.
- Best agreement with SCIAMACHY limb data achieved by SCIAMACHY nadir (TEMIS)
- Variability in SCIAMACHY limb data is quite high, probably due to sampling.
- In winter at high latitudes, SCIAMACHY limb columns can be higher than nadir columns, indicating possible problems with the nadir retrieval (snow, sampling).

References

- Beirle, S. et al., Retrieval of tropospheric column densities of NO₂ from combined SCIAMACHY nadir/limb measurements, Atmos. Meas. Tech. 3 (2010): 283-299.
- Boersma, K. F. et al., Near-real time retrieval of tropospheric NO₂ from OMI, Atmos. Chem. Phys. 7 (2007): 2103-2118.
 Bucsela, E. J. et al., Algorithm for NO₂ vertical column retrieval from the ozone monitoring instrument, *IEEE Transactions on Geoscience and Remote Sensing* 44 (2006): 1245-1258.
 Rozanov, A. et al., NO₂ and BrO vertical profile retrieval from SCIAMACHY limb measurements: Sensitivity studies, Advances in Space Research 36 (5) (2005): 846-854.
 Sinnhuber, B.-M. et al., Total ozone during the unusual Antarctic winter of 2002, *Geophys. Res. Lett.*, 30(11) (2003): 1580.
 Sinnhuber, M., J. et al., A model study of the impact of magnetic field structure on atmospheric composition during solar proton events, *Geophys. Res. Lett.*, 30(15) (2003): 1818.
- SCIAMACHY limb measurements are the best measurement of stratospheric NO₂ available (tangent height 12km to 46km).
- Relatively low coverage (small pixel sizes, only few measurements per orbit) leads to difficulties in deriving global fields.
- In this study:
 - assign a LOS to each of four limb states
 - for each nadir pixel, interpolate to the correct latitude along each state
 - for each nadir pixel, interpolate to the correct LOS
 - scale limb columns to nadir columns using laitude-dependent additive offset
- Slant columns calculated with CDI retrieval from Rozanov et al. (2005)

Acknowledgements

This work has been funded by the Helmholtz Association's Earth System Science Research School (ESSReS).

