Accepted Manuscript

Title: Megacities as hot spots of air pollution in the East Mediterranean

Authors: Maria Kanakidou, Nikolaos Mihalopoulos, Tayfun Kindap, Ulas Im, Mihalis Vrekoussis, Evangelos Gerasopoulos, Eirini Dermitzaki, Alper Unal, Mustafa Koçak, Kostas Markakis, Dimitris Melas, Georgios Kouvarakis, Ahmed F. Youssef, Andreas Richter, Nikolaos Hatzianastassiou, Andreas Hilboll, Felix Ebojie, Folkard Wittrock, Christian von Savigny, John P. Burrows, Annette Ladstaetter-Weissenmayer, Hani Moubasher

PII: S1352-2310(10)01016-2

DOI: 10.1016/j.atmosenv.2010.11.048

Reference: AEA 10063

To appear in: Atmospheric Environment

Received Date: 4 July 2010

Revised Date: 17 November 2010

Accepted Date: 30 November 2010

Please cite this article as: Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Gerasopoulos, E., Dermitzaki, E., Unal, A., Koçak, M., Markakis, K., Melas, D., Kouvarakis, G., Youssef, A.F., Richter, A., Hatzianastassiou, N., Hilboll, A., Ebojie, F., Wittrock, F., von Savigny, C., Burrows, J.P., Ladstaetter-Weissenmayer, A., Moubasher, H. Megacities as hot spots of air pollution in the East Mediterranean, Atmospheric Environment (2010), doi: 10.1016/j.atmosenv.2010.11.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	ACCEPTED MANUSCRIPT Megacities as hot spots of air pollution in the East
2	Mediterranean
3	Maria Kanakidou ^{a,*} , Nikolaos Mihalopoulos ^a , Tayfun Kindap ^b , Ulas Im ^a ,
4	Mihalis Vrekoussis ^{c, h} , Evangelos Gerasopoulos ^d , Eirini Dermitzaki ^a ,
5	Alper Unal ^b , Mustafa Koçak ^{a,e} , Kostas Markakis ^f , Dimitris Melas ^f ,
6	Georgios Kouvarakis ^a , Ahmed F. Youssef ^g , Andreas Richter ^h , Nikolaos
7	Hatzianastassiou ⁱ , Andreas Hilboll ^h , Felix Ebojie ^h , Folkard Wittrock ^h ,
8	Christian von Savigny ^h , John P. Burrows ^h , Annette Ladstaetter-
9	Weissenmayer ^h , Hani Moubasher ^g
10	^a Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete,
11	POBox 2208, 71003 Voutes, Heraklion, Greece
12	^b Istanbul Technical University, Istanbul, Turkey
13	^c Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens,
14	Greece
15	^d National Observatory of Athens, Lofos Koufou, Penteli, Athens, Greece
16	^e Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, Turkey
17	^f Aristotle University of Thessaloniki, Thessaloniki, Greece
18	^g Cairo University, Center for Environmental Hazard Mitigation (CEHM), and Basel
19	Convention Regional Centre for Training and Technology Transfer for the Arab States in Egypt, Giza,
20	Egypt
21	ⁿ Institute for Environmental Physics, Bremen University, Bremen, Germany
22	⁴ Department of Physics, University of Ioannina, Greece
25 24	
25	
26	
27	[*] Corresponding author. Tel.: +30 2810 545033; Fax: +30 2810 545166. E-mail address:
28	mariak@chemistry.uoc.gr (M. Kanakidou)
29	Abstract
30	This paper provides a comprehensive overview of the actual knowledge on the
31	atmospheric pollution sources, transport, transformation and levels in the East
32	Mediterranean. It focuses both on the background atmosphere and on the similarities
33	and differences between the urban areas that exhibited important urbanization the past

34 years: the two megacities Istanbul, Cairo and the Athens extended area. Ground based 35 observations are combined with satellite data and atmospheric modeling. The overall 36 evaluation pointed out that long and regional range transport of natural and 37 anthropogenic pollution sources have about similar importance with local sources for 38 the background air pollution levels in the area.

- 39
- 40

Keywords: megacities, East Mediterranean, air pollution, transport, anthropogenic impact

41 **1. Introduction**

42 The increasing need of humans for facilities, security, health care and 43 employment have been the driving forces for increasing urbanization that gave birth 44 to the Megacities, urban agglomerations with more than 10 million of inhabitants 45 (http://www.worldclimate.com). This increasing urbanization not only affected the 46 neighboring landscape, air quality, regional climate and ecosystems in the megacities 47 but also downwind of these regions. During the last decades, the Mediterranean, 48 following the general trend, has experienced a rapid growth in urbanization, vehicle 49 use and industrialization as being reflected in pollutant emissions to the atmosphere. 50 The Eastern basin of the Mediterranean and the surrounding regions, include 51 two megacities: the Greater Cairo area (GCA) (>15 million, Egypt) at the south edge 52 of the basin and the Greater Istanbul Area (GIA) (>12 million inhabitants, Turkey) at 53 the North East edge, as well as several large urban centers like to its northern part the 54 Greater Athens area (GAA) (>4 million) in Greece (Table 1, Figures 1 and 2a) that 55 exhibited important urbanization the past years. The region covers rural (inland Greek 56 and Anatolian peninsulas), maritime (Crete and Cyprus islands) and desert (Anatolian 57 plateau, north Africa, Middle East) sites.

The Mediterranean located at the boundary between the tropical and midlatitudes, is subject to large (about 50%) changes in the total O₃ column (Ladstaetter-

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

60	Weissenmayer et al., 2007), which have been attributed to changes in the location of
61	the sub-tropical front (Hudson et al., 2003). It is also a crossroad of air masses coming
62	from Europe, Asia and Africa, where anthropogenic emissions, mainly from Europe,
63	Balkans and the Black Sea, meet with natural emissions from Saharan dust (e.g.
64	Kallos et al., 1993, Kanakidou et al., 2007), vegetation (e.g. Liakakou et al., 2009)
65	and the sea (e.g. Kouvarakis et al., 2002), as well as from biomass burning (e.g. Balis
66	et al., 2003), which present a strong seasonal pattern. The transport of anthropogenic
67	pollutants from America also exerts a significant influence in the free troposphere
68	(Lelieveld <i>et al.</i> , 2002).
69	The typical Mediterranean climate is characterized by hot dry summers and mild
70	reiny winters. Even protion is consciolly high in its postern half basin, greatly
70	ramy winters. Evaporation is especially high in its eastern han basin, greatly
71	exceeding precipitation and river runoff in this region. This causes the sea water level
72	to decrease and salinity to increase eastward (Demirov and Pinardi, 2002). As a
73	consequence of its unique location and emissions, the Mediterranean is a climatically
74	sensitive region, often exposed to multiple stresses, such as a simultaneous water
75	shortage and air pollution exposure (IPCC, 2007) that is favored by the Mediterranean
76	climate and is likely to grow in the future due to the rapid urbanization.
77	Air pollution is one of the challenging environmental problems in the whole
78	East Mediterranean basin since both ozone and aerosol air quality limits are often
79	exceeded, in particular during summer. In contrast to Central and Northern Europe,
80	photochemical episodes can also occur during winter since at these latitudes solar

- 81 radiation is intensive year-around, driving photochemical reactions that favour air
- 82 pollution. The contribution of natural emissions to these exceedences seems
- 83 significant and remains to be determined. High ozone and aerosol concentrations are

84 harmful for human health and ecosystems, and they also cause agricultural crop loss

85 and climate change.

86	This paper summarizes the actual knowledge on the atmospheric pollution
87	sources, transport, transformation and levels in the Eastern Mediterranean. It first
88	outlines characteristics of the two megacities Istanbul and Cairo and the Athens
89	extended area, air transport patterns and meteorology. Then it discusses the
90	similarities and differences between these major pollution sources in the region and
91	compares them to the background atmosphere. Areas where further research is needed
92	to support mitigation strategy development are pointed out.
93	2. The Megacities characteristics
94	The studied urban areas are distributed over three continents: Europe, Asia and
95	Africa and present some common features as well as significant differences (Table 1).
96	Istanbul extends on two continents with the European part of the city being the oldest
97	one. It is separated from the Asian part by Bosporus strait of 30-km length that
98	connects the Marmara Sea at the south with the Black Sea at the north.
99	The air circulation patterns at all three urban locations are affected by the
100	existence of hills: seven hills in GIA, the Mogattam hill to the east and the southeast
101	of GCA and the Parnes, Penteli and Hymettus mountains, all three over 1000 m,
102	surrounding mainly the North- and East boundaries of GAA. In Istanbul northeasterly
103	winds prevail during summer (Kindap, 2008) whereas southwesterly occur mainly
104	during winter (Koçak et al., 2010). Istanbul is vulnerable to trans-boundary transport
105	of air pollutants from Europe, because of its location on the eastern end of the
106	continent in the zone of westerly synoptic air flow (Kindap et al., 2006). Cairo
107	experiences two dominant wind sectors: the North sector and the South-West sector.
108	Although prevailing all year long, the north sector presents maximum occurrence

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

109	frequency in summer. The winter and spring seasons are significantly impacted by
107	nequeney in summer the winter and spring seasons are significantly impacted by
110	south-western winds (Favez et al., 2008a,b). Finally, in Athens, the prevailing wind
111	axis is north-east/ south-west and the ventilation takes place at northeasterly
112	directions (Melas et al., 1995).
113	GIA and GAA are both subject to sea and land breeze local circulation
114	phenomena, favored during the weakening of the synoptic wind. During summer, the
115	southern part of GIA close to the Marmara Sea experiences such circulation patterns
116	that influence pollutants transport and accumulation in the boundary layer (Im et al.,

117 2006). The northern part of GIA is affected by the colder northern air masses and the

118 cooler Black Sea. In Athens sea/land breezes appear along the axis of the basin (NE to

119 SW) and anabatic/catabatic flows from the surrounding mountains. Under these

120 circumstances the ventilation of the basin is poor; the boundary layer is shallow and

121 the air pollution potential increases (Melas *et al.*, 1995 and references therein). The

sea breeze system from the Saronic Gulf, located to the south of GAA, sweeps

123 primary pollution from the city center, combined with O₃ titration, and favors

124 pollutant accumulation to the northern suburbs where significant episodes are

encountered. Air pollution episodes may occur in Athens during all seasons of theyear but most of these episodes are associated with the development of sea-breeze

127 (Kallos *et al.*, 1993).

128 2.1.Istanbul

The city of Istanbul (Table 1) is hosting almost 17% of Turkey's population. Since the southern part of the GIA is the most urbanized, further growth will intensify pressure on industrial and residential uses in the northern part of the metropolitan region, where the natural protection areas and the watersheds are located (OECD, 2008). Average wind speed is highest in winter and lowest in summer with annual average of about 2.7m/s. The humidity is high during all seasons (Ezber *et al.*, 2007).

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

The heating effect due to urbanization was found to produce two-cell structure during summer, one on the European and one on the Asian side of the city. The cells extend to about 600–800 m height in the atmosphere over the city and combine aloft (Ezber *et al.*, 2007).

139

140 2.2.*Cairo*

Cairo (Al-Qāhirah), Egypt's capital (Table 1) situated south of the delta in the 141 Nile basin, is the largest rapidly expanding city in Egypt facing many environmental 142 problems. GCA's main populated area of about 200 km² is 4 km wide stretching 50 143 144 km along the banks of the Nile River. Outside GCA desert areas extend in the west 145 and east directions. Dust and sand storms frequently occur in spring and autumn 146 (Zakey and Omran, 1997). Hot desert cyclones known as the "Khamasin" depressions 147 pass over the desert during spring, always associated with strong hot and dry winds 148 often carrying dust and sand that increase particulate matter (PM) levels. During 149 winter the climate is generally cold, humid and rainy; while during the summer season 150 the predominant weather is hot and dry (Zakey et al., 2008). The mean wintertime 151 wind is weaker than during summer, implying a lower ventilation of the area during 152 winter that could favor pollutant accumulation in the vicinity of the sources (Abu-153 Allaban et al., 2009). Robaa (2003) showed that rural and suburban parts of the city have higher ventilation due to higher wind speeds than urban parts, which may lead to 154 155 higher pollutant levels in the urban regions of GCA. Cairo has a very poor dispersion 156 factor because of the advection patterns, its layout of tall buildings and narrow streets 157 and the lack of rain (Table 1). This results in a permanent haze over the city with PM 158 in the air reaching over three times the background levels.

159

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

2.3.Athens agglomeration

161	The GAA gathers about 40% of Greece's total population in a basin on the
162	west coast of the Attica peninsula. During the warmer part of the year, the mean wind
163	pattern in the atmospheric boundary layer is a persistent northeasterly flow of
164	relatively high constancy. GAA is also exposed to the summer monsoon circulation of
165	the Eastern Mediterranean. Etesians, a system of semi persistent summer northerly
166	winds, favor good ventilation of the basin prohibiting pollution episodes.

167

160

168 2.4. Outflow of pollution

169 Trajectories at approximately 700m height have been used to define air 170 pollution transport patterns from Istanbul, Cairo and Athens, in a regional scale. They 171 are based on 30-year (1961-1990) reanalysis data (NCEP/NCAR), available for every six hours at a 2.5° resolution (Kindap et al., 2009). The computed probability depends 172 173 on the grid size and increases with the trajectories length, with very small changes for 174 trajectories longer than 8 days (Kindap et al., 2009). Figure 1 depicts the probability 175 of air masses originating from GIA, GCA and GAA to reach various locations in the 176 East Mediterranean, demonstrating the regional importance of air pollution from these 177 megacities. Istanbul pollution is exported mainly in the North East- South West 178 direction (Kocak et al., 2010) whereas Cairo outflow is mainly affecting the south-179 southwest locations and the Arabian Peninsula. Similarly, Athens plume is transported 180 mainly towards South East over the East Mediterranean Sea. These results are in good 181 agreement with the global modeling study by Lawrence et al. (2007).

182 **3.** Emission sources of air pollutants

183 All three cities experience heavy pollution from the transportation sector with184 more than 2 million of cars in Athens and Istanbul and more than 1 million in Cairo,

185	of variable age and technical characteristics with the older ones in Cairo. A large
186	fraction of their country's industrial activities is also located in their vicinity.
187	The emissions inventories available for the entire East Mediterranean have
188	relatively coarse resolution (e.g. EMEP in 50 km resolution, Vestreng et al., 2006,
189	and global inventories down to 1°x1° Granier et al., 2005). The new EDGAR v4
190	inventory now becoming available, is making significant improvement increasing the
191	resolution to $0.1^{\circ} \times 0.1^{\circ}$ (<u>http://edgar.jrc.ec.europa.eu/</u>). However for large urban
192	agglomerations such as GIA, GAA and GCA higher resolution detailed emission
193	inventories would greatly improve our understanding of air pollution levels in the
194	area. Such inventories of anthropogenic sources have been developed by Markakis et
195	al. (2009; 2001a,b), in high spatial ($2x2 \text{ km}^2$) and temporal resolutions for the GIA
196	(reference year 2007) and for the GAA (reference year 2003), but appropriate
197	information is still missing for Cairo (Table 2). Weekend emissions are lower than
198	week days and diurnal profile fits with the rush hours due to the highest contribution
199	of traffic emissions (Markakis et al., 2009). Application of the Markakis et al. (2009)
200	inventory has significantly improved the simulations of PM_{10} levels (Im <i>et al.</i> , 2010)
201	in GIA.

202 Table 2 shows the annual sectoral distribution of pollutants. Industrial 203 activities are important sources of PM and responsible for almost 30 % of the SO₂ 204 emissions. On-road traffic is the major contributor to CO, NO_x and non methane 205 volatile organic compounds (NMVOCs) in Istanbul and Athens. Residential 206 combustion and cargo shipping are significant pollution contributors in GIA and 207 GAA. Similar conclusions are reached for Istanbul by Koçak et al. (2010), based on 208 Positive Matrix Factorization (PMF) analysis of aerosol chemical characterization 209 observations (Theodosi et al., 2010) from an urban background site in Istanbul. 210 Almost 20% of PM emissions in GAA originate from non-exhaust sources, including

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

211	tire, break wear and road abrasion. The central heating operations do not account for
212	more than a few percent in the annual totals (with the exception of $SO_2 \sim 15\%$
213	contribution), but in the winter months they make a significant contribution.
214	Cairo shows different emissions fingerprint: Residential Combustion and
215	Industries being the major emitters of CO and NOx whereas NMVOC emissions are
216	mostly from solvents use seconded by road transport. A significant portion of NO _x
217	(~50%) and SO ₂ (~71%) originates from industrial activities. On-road traffic is also
218	an important source for CO (35%), NMVOC (37%) and $PM_{2.5}$ (36%). Anthropogenic
219	$PM_{2.5}$ in GCA originates mainly (54%) from residential combustion and open
220	burnings. Open fire burnings is a common practice and a major contributor to air
221	pollution in Egypt, as also seen on aerosol optical depth (AOD) seasonality derived
222	from satellite data with peaks in fall (Hatzianastassiou et al., 2009).
223	To limit air pollution, measures were taken in all three urban centres around

224 1990-1995 with different level of implementation success.

225

3.1.Istanbul

227 Between 1980 and 1990 the consumption ratio of coal to fuel-oil increased 228 from 0.68 (in 1980) to 3.09 (in 1990; Tayanc, 2000). There has been the use of higher 229 quality coal and a shift from coal to natural gas for domestic heating purposes starting 230 from early 90s, leading to a decrease in the concentrations of primary pollutants such 231 as sulfur oxides (SO_x) and an increase in secondary pollutants such as secondary 232 aerosols and ozone (Tayanç, 2000). From the beginning of 1998 liquefied petroleum 233 gas (LPG) has been widely used in traffic. Low quality solid and liquid fuels with 234 high sulfur content, natural gas and LPG are the most commonly used fuel types in 235 the industrial activities that comprise 37% textile, 30% metal, 21% chemical, 5% food 236 and 7% other industries (Istanbul Chamber of Industry reports cited by Im et al.,

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

237 2006). Under these dense and various industrial activities, the region experiences very

238 complex air quality conditions.

239

240 *3.2.Cairo*

241 About 52% of the industries and 40% of the electricity production in Egypt are 242 located in the GCA (Nasralla, 2001). Cairo has many unregistered lead and copper 243 smelters which heavily pollute the city. GCA accommodates 50% of Egypt's road 244 transport fleet, 60% of which is over 10 years old, lacking modern emission cutting 245 features like catalytic converters (Mowafi and Atalla, 2005). The information 246 regarding the amounts of pollutants released in the atmosphere of Cairo is very 247 limited (El Mowafi and Atalla, 2005; Gurjar et al., 2008; Table 2). Source 248 apportionment analysis based on simultaneous observations of several non methane hydrocarbons (NMHC), including aromatics, and of aerosol components, including 249 250 metals, (Abu-Allaban et al., 2002, 2007, 2009), pointed to mobile and industrial 251 emissions (lead smelting and LPG, considering that industrial processes may be fueled by LPG) as the major source of NMHC during both summer and winter. 252 253 In 1995, the first environmental acts were introduced and the situation has 254 seen some improvement, with 36 air monitoring stations and emissions control on 255 cars. 20,000 buses have also been commissioned to the city to improve congestion 256 levels. In 2003, Egypt initiated an enforced vehicle emission-testing program in 257 Greater Cairo. The limits of CO, hydrocarbons and opacity for the vehicles have been 258 significantly reduced in 1995. However, the publicized information indicated an 259 overall failure rate of about 10% (El Mowafi and Atalla, 2005). 260

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

3.3.Athens

261

262 The massive number of registered vehicles in circulation, growing at a rate of 263 7% yearly, is allegedly the major cause of air pollution related problems in the area, 264 taking into account the large proportion of non-catalytic (0.8 million) or powered by 265 old technology diesel engines vehicles (0.2 million). Athens experiences very severe 266 congestion phenomena with the average speed not exceeding 12 km/h during rush 267 hours. Although the use of natural gas for domestic heating purposes has increased 268 lately, combustion of fuel oil is still primarily used for central heating. The large 269 industrial complexes are located in the Thriassion plain, several kilometres to the west 270 of the GAA. They are separated from the Athens basin by mount Aigaleo (up to 450 271 m) that acts as a physical barrier preventing most of the exchange of air pollutants 272 between the industrialized area and the city (Melas et al., 1998).

273

4. Air pollution in the East Mediterranean

274 Enhanced levels of pollution (Figure 2) and increasing trends over the last 275 decade are seen by satellites over East Mediterranean and over the Middle East and 276 Cairo (Lelieveld et al., 2008; Vrekoussis et al., 2009). Background tropospheric O₃ 277 levels in the area are high, particularly in spring and summer, depending on the 278 meteorological conditions since they are controlled by large-scale, long-range 279 transport and photochemical formation (Gerasopoulos et al., 2005). Background PM 280 levels are also high due to a significant contribution of Sahara dust aerosol (Querol et 281 al., 2009) but also transported pollution (Mihalopoulos et al., 2007). In the urban 282 atmosphere due to the high levels of primary pollutants, like PM and NO_x, maintained 283 by the anthropogenic emissions, O_3 titration by reaction with NO is leading to very 284 low O₃ levels over city centers, whereas NO_x and PM remain high. Primary pollutants 285 decrease downwind where O₃ and secondary aerosols build up photochemically. In

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

286	the urban regions, the temporal variability of primary gaseous pollutants reflects the
287	high emissions during winter time and the faster photochemical destruction during
288	summer time. Figure 2b depicts the tropospheric NO ₂ columns as observed by
289	SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric
290	CHartographY) for the period 2005-2006 and highlights the local pollution sources all
291	around the Mediterranean. SCIAMACHY observations of NO ₂ tropospheric column
292	over the region (Figure 2b) indicate high tropospheric columns of NO ₂ over urban
293	sites around the Mediterranean with those over both the GIA and the GCA increasing
294	over the last years (Vrekoussis et al., 2009). This distribution nicely contrasts to the
295	O_3 distribution shown in Figure 2a, that presents the largest enhancement actually
296	over the water, covering the whole East Mediterranean basin, which acts as receptor
297	of the surrounding pollution. Total columns of CO over the region range between 1.5
298	and $3x10^{18}$ molecules.cm ⁻² maximizing in late winter/early spring (high emissions)
299	and minimizing in late summer/early fall (high photochemical destruction) (MOPITT:
300	Measurements of Pollution in The Troposphere; <u>ftp://l4ftl01.larc.nasa.gov/MOPITT/</u>
301	MOP03M.003/).

302 Mean satellite observations of short lived trace gases (NO₂, CHOCHO, HCHO 303 and O_3) and AOD over the region during the recent years are summarized in Figure 3. 304 High tropospheric columns of NO₂, HCHO, CHOCHO are observed over urban 305 locations (GIA, GCA, GAA) and low levels over the background receptor site of 306 Finokalia. The progressive reduction of tropospheric columns of NO₂ from Istanbul to 307 Athens and then to Cairo can be noticed together with a similar trend in CHOCHO 308 and HCHO, used as proxy for NMVOC levels. Remarkably, CHOCHO peaks over 309 GCA pointing to a higher NMVOC/NOx ratio than over GIA and GAA. This 310 indicates higher O₃ formation potential of NO_x in GCA due to high NMVOC 311 loadings, in agreement with ground-based observations (Abu-Allaban et al., 2009).

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

- 312 The HCHO/CHOCHO ratio appears different over GCA than over GIA and GAA,
- 313 indicating a different NMVOC speciation in this region, most probably strongly
- 314 marked by biomass burning emissions. Tropospheric O₃ columns indicate the elevated
- 315 O₃ background towards the south that maximizes over the Finokalia receptor site.
- 316 However, they minimize over GCA that is closer to tropics and thus affected by a
- 317 much lower total O₃ column (~18 DU lower than over Finokalia, based on TOMS /
- 318 OMI 2005-2008 data in 0.25°x0.25° grid; <u>http://gdata2.sci.gsfc.nasa.gov</u>).

320 *4.1.Ozone and its precursors*

321 Table 3 recapitulates the available measurements of ozone in the Eastern Mediterranean at urban and regional background locations. A clear North to South 322 323 increasing gradient is evident. In particular, surface O_3 increases when moving from 324 rural background sites of Istanbul to Athens and then to Cairo, indicating significant contribution from long-range transport sources in air masses that age in the region. 325 326 Ozone measurements along the Aegean Sea (NE Mediterranean, Kourtidis et al., 2002; Kouvarakis et al., 2000) confirmed that transport from the European continent 327 328 is the main mechanism controlling ozone levels in the region, especially in summer 329 (or spring depending on the prevailing air transport patterns), when ozone presents a 330 maximum of about 60±10 ppbv (Gerasopoulos et al., 2005).

331 Kalabokas *et al.* (2007) analyzing aircraft data found that during summer in 332 the middle troposphere of the eastern basin, O_3 was only 5–10% higher than over 333 Central Europe and high tropospheric ozone values were mainly confined in the low 334 troposphere. Gerasopoulos *et al.* (2006b) analyzing 7 years of surface O_3 observations 335 at Finokalia, found that the entrainment of O_3 rich air masses from the free 336 troposphere (4–6% of the observed ozone levels) maximizes during summer, when 337 the chemical production of O_3 is also enhanced by photochemistry and long-range

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

338	transport. This summertime high regional source term of O_3 is almost balanced by the
339	enhanced O ₃ destruction via deposition and chemistry. Below a brief presentation of
340	the ozone measurements at the various cities is presented.

342 **4.1.1.** Istanbul

343	Im <i>et al.</i> (2008) reported O_3 observations at two different urban locations
344	within GIA located at both its European (8±7 ppbv) and the Asian (11±8 ppbv) parts
345	from 2001 to 2005. The highest ozone levels were observed during sunny and warm
346	summer days (maximum temperatures >25 $^{\circ}$ C) with southwesterly surface winds.
347	Recent observations of ozone levels in semi-urban and rural stations in the GIA
348	during the period 2007-2009 (Im et al., 2009), provide insight to the background
349	levels of ozone in the extended area. They show higher ozone levels than the urban
350	stations, reaching 30-35 ppbv on average, for high ozone seasons.

351

352 **4.1.2.** Cairo

Ozone in the southwestern Cairo area has been observed to exhibit a seasonal 353 354 and diurnal cycle with levels reaching 70 ppbv in summer (Egyptian Environmental 355 Affairs Agency, http://www.eeaa.gov.eg/ eimp/news8.html). Year-long, mean levels 356 often exceed the Egyptian and European Union air quality standards of 60 ppbv for 357 daytime (8-h) O₃ mixing ratios. Khoder (2009) reported a year (Dec 2004-Nov 2005) 358 of observations of ground level O_3 , nitrogen dioxide (NO₂) and nitric oxide (NO) concentrations at Giza in the GCA with daytime mean O₃ values of 91 ppbv during 359 360 summer (Table 3). Air masses reaching Cairo during summer originate from the 361 Aegean and the Cretan Seas. Thus, considering the Finokalia regional background 362 values (60 ppbv), the observed mean value of 91 ppbv in Cairo indicates that despite 363 O₃ titration from the local NO_x emissions, significant photochemical O₃ production

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

364	occurs. This is additionally supported by high VOC levels (Abu-Allaban et al., 2009)
365	in the GCA, in agreement with the satellite observations shown in Figure 3. Maxima
366	in O_3 levels occur in summer due to local photochemical production and long range
367	transport whereas the highest levels of NO_x are found in winter. The diurnal cycles of
368	O_3 revealed a uni-modal mid-day peak year-around. The diurnal variations in NO_x
369	concentrations during the winter and summer showed two daily peaks linked to traffic
370	density.

372 **4.1.3.** Athens

373 Kalabokas et al. (1999a,b) analyses of 11-year observations from the Greek 374 Ministry of Environment air pollution network in Athens since 1987, show a 375 significant downward trend for almost all primary pollutants in all stations. 376 Comparison between the 3-year periods 1988-1990 and 1995-1997 gave the highest 377 reduction in the center of GAA of 52%, 34%, 26% and 20% for SO₂, CO, NO_x and 378 black smoke, respectively. The concentrations of the secondary gaseous pollutants 379 remained essentially at the same levels since 1990, even though different 380 characteristics (e.g. in ozone trends) may me observed for different site types 381 (Hatzianastassiou et al., 2007). Observations of O₃ prior to 2000 (Kalabokas and 382 Repapis, 2004) at three stations in the GAA and the surroundings were found to 383 exhibit characteristic seasonal variation of rural ozone concentrations, with lowest 384 winter afternoon values at about 25 ppbv in December–January and average summer 385 afternoon values at about 60 ppbv in July-August. These values are comparable to 386 observations at Finokalia (Gerasopoulos et al., 2005; 2006b) and indicate significant 387 contribution from long range transport sources rather than local photochemistry. 388 The increased regional background in Athens is also supported by the CO-389 NOx molar ratios in GAA (Figure 4, derived from Table 3) that are between 20 and

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

390	30, whereas in GIA are lower ranging from 9.8 (Sarachane) to 12.6 (Kadikoy) close to
391	those in Mexico City (11) and higher than for Tokyo (8.5) and US cities (6.7 in 2003)
392	(Parrish et al., 2009). Both in GIA and GAA, CO-to-NOx molar ratios are lower than
393	the mean ratio of 41 observed in Beijing that has been attributed to significant
394	regional contribution to CO levels in that megacity (Parrish et al., 2009). Ratios
395	higher than 50 are derived from the observations by Elminir et al. (2005) for a GCA
396	residential site and point to the different CO sources characteristics (like older cars,
397	domestic combustion and open fires) in GCA than in the other megacities. These
398	ratios are however much lower than those of about 100 to more than 300 observed
399	during summertime at Finokalia where long range transport is the dominant source for
400	CO.

402 *4.2. Airborne particulate matter*

The Mediterranean is one of the areas with the highest AOD in the world, also 403 404 seen from space (Hatzianastassiou et al., 2009), which presents high temporal variability due to the short lifetime of PM in the troposphere (of the order of a week). 405 406 Two-year (2005-2006) mean observations of AOD at 443nm over the area from 407 MISR (Multiangle Imaging Spectro Radiometer) and of the aerosol small mode 408 fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer, 409 using the Giovanni daily data of NASA GES DISC), are depicted in Figures 2c and 410 2d. Although the annual mean AOD distribution is marked by the Sahara dust 411 contribution, relatively high levels of AODs are also seen over the Aegean and the 412 Black Sea. In addition, Figure 2d indicates the existence of significant fraction (about 413 0.5 to 0.6) of fine particles in the region that are commonly associated with pollution 414 sources. Synergistic analysis of MODIS AOD and aerosol index TOMS data, used as 415 proxy for absorbing dust aerosol, enabled a first evaluation of the local anthropogenic

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

416	contribution to the AOD over the GAA and GCA at 15-30% and 25-50%.
117	respectively, during summer (Hatzianostassion et al. 2000)
41/	respectively, during summer (Hatzianastassiou <i>et al., 2</i> 009).
418	Ground- based observations over the area show high concentrations of aerosols, in
419	both PM_{10} and $PM_{2.5}$ fractions (Querol <i>et al.</i> , 2009), with $PM_{2.5}/PM_{10}$ ratios around
420	0.5 (Table 3), in agreement with the satellite observations in Figure 2d. In the Eastern
421	Mediterranean, PM_{10} has a similar seasonal behavior as $PM_{2.5}$, with maxima in spring
422	and fall in the eastern basin due to African dust transport. This is also seen by lidar
423	(Papayannis et al., 2008), sun photometer (Fotiadi et al., 2006) networks and satellite
424	based-sensors (Papayannis et al., 2005; Kalivitis et al., 2007). PM ₁ behaves
425	differently showing small maxima during summer and is mainly dominated by
426	pollution components (Gerasopoulos et al., 2007; Koçak et al., 2008).
427	In the background coarse mode aerosol $(PM_{1,3-10})$ dust and ionic components
428	contribute about 40% and 50%, respectively and organics about 10% (Koulouri et al.,
429	2008a). Mineral dust transport events are found to contribute about 8-12 $\mu g \ m^{\text{-3}}$ to the
430	background PM_{10} annual mean levels in the East Mediterranean, whereas an
431	additional 5-10 μ g m ⁻³ is attributed to transported anthropogenic regional sources and
432	sea-spray loads (Querol et al., 2009). Re-suspension of dust is likewise a significant
433	and highly uncertain component of aerosols in the cities. Recent aerosol mass
434	spectrometer measurements of ultra fine aerosols on Crete Island during late spring
435	(Hildebrandt et al., 2010), revealed highly oxidized background organic aerosol
436	throughout the campaign, regardless of the source region. These observations of aged
437	particles in air masses that circulated and were photochemically processed over the
438	extended region, support the role of the East Mediterranean basin as the 'pressure-
439	cooker' of transported air pollution. Compared to the colder Central and North
440	Europe, the high temperatures in the Mediterranean impose a low thermal stability of

441	ammonium nitrate in summer and favor the formation of nitric acid rather than
442	ammonium nitrate in the area (Querol et al., 2009; Mihalopoulos et al., 1997).
443	High sulfate background loadings in the East Mediterranean are mostly
444	attributed to the long-range transport of SO ₂ (Zerefos et al., 2000). In addition,
445	significant interactions exist in the Mediterranean between natural and anthropogenic
446	components in the atmosphere, both in the gas and aerosol phases. Observations and
447	modeling have shown that on a mean yearly basis, marine biogenic emissions
448	contribute up to 20% to the total sulphate production (Kouvarakis and Mihalopoulos,
449	2002). They also demonstrate that the reaction of dimethyl sulfide of marine origin
450	with nitrate radicals, which are mainly of anthropogenic origin, is responsible for
451	about 17% of the total HNO ₃ production plus particulate nitrate formation
452	(Vrekoussis et al., 2006). The deposition of these species is of great environmental
453	significance since it provides nutrients to the ocean. During summer in the eastern
454	Mediterranean, sulphate on fine particles is produced via gas phase reactions whereas
455	almost 90% of the supermicron nss-sulphate is formed via heterogeneous pathways,
456	coating natural aerosols (Mihalopoulos et al., 2007).
457	
458	4.2.1. Istanbul
459	Hourly PM_{10} levels are monitored by the metropolitan Municipality of
460	Istanbul at the urban network stations of GIA since late 90's. GIA experiences high
461	and variable levels of PM_{10} and $PM_{2.5}$ particles (Table 3). Ozdemir <i>et al.</i> (2009)
462	reported average PM ₁₀ levels of about 66 μ g m ⁻³ observed at 10 Istanbul municipality
463	stations during the last 10 years with values ranging from 47 μ g·m ⁻³ to 115 μ g·m ⁻³ .
464	A significant fraction of studied PM_{10} episodes has been attributed to regional
465	transport of African dust and anthropogenic emissions. Kindap et al. (2006)
466	calculated that almost 50% of the wintertime PM_{10} episodes in 2002 are associated

467	with air masses coming from Eastern Europe. Karaca and Camci (2010) attributed
468	about half of the studied high PM_{10} levels in Istanbul in 2008 to distant source
469	contributions. On the other hand, Im et al. (2010) studied the effect of local emissions
470	on a 5-day PM episode in January 2008 using the high resolution emission inventory
471	of Markakis et al. (2009) and attributed 90% of the elevated PM_{10} levels to local
472	anthropogenic emissions, combined with very low persisting vertical mixing. This is
473	in agreement with Koçak <i>et al.</i> (2010), who evaluated the contribution of the
474	anthropogenic sources to PM_{10} levels at about 90%, in an independent analysis of the
475	same episode.
476	Recently, more than one year of aerosol observations at the background
477	Bõgazici University sampling station in Bosporus strait coast, provided the first
178	complete chemical characterization measurements in GIA (Theodosi <i>et al.</i> 2010)
470	They measured 0 different water soluble ions water soluble organic orbon (WSOC)
4/9	They measured 9 different water-soluble lons, water soluble organic carbon (wSOC),
480	organic and elemental carbon (OC, EC) and several trace metals, between November
481	2007 and June 2009. Trace elements related to human activities obtained peak values
482	during winter due to domestic heating, whereas natural origin elements peaked during
483	the spring period due to dust transport from Northern Africa. During winter, OC was
484	found to be mostly primary and strongly linked to fuel oil combustion and traffic, as
485	EC. Both OC and EC concentrations increased during winter due to domestic heating.
486	The mean OC/EC ratio was about 2, lower than those in Athens and Finokalia, but
487	close to those observed in GCA (Table 3), indicating an overall dominance of primary
488	pollution. The higher WSOC to OC ratio observed during summer was mostly
489	attributed to the presence of secondary, oxidised and more soluble organics. Source
490	apportionment PMF analysis of these long term observations indicates that
491	approximately 80 % of the PM_{10} in Istanbul is anthropogenic in origin (Koçak <i>et al.</i> ,
492	2010). Secondary aerosols maximize during summer and are mainly due to long-range

493	transport sources that account for 20% of the PM_{10} mass over the studied 1.5-years
494	period. Adding the contributions of crustal and sea salt (10.2 and 7.5 % of the
105	observed mass respectively) regional sources can explain at least 38% of PM mass
495	in line with the corling montioned studies
496	in line with the earlier mentioned studies.
497	
498	4.2.2. Cairo
499	There have been a number of studies that evaluated the long-term surface
500	aerosol observations in Cairo (Abu-Allaban et al., 2002; 2007) along with chemical
501	composition (Favez et al., 2008a,b). These studies showed that the area is
502	characterized by elevated levels of surface PM, with annual averages around 100 μ g
503	m ⁻³ and above (Table 3). Favez <i>et al.</i> (2008a,b) reported more than 2 years (Jan.
504	2003- May 2006) of weekly observations of bulk aerosols at two GCA urban sites
505	(Table 3), along with their chemical characterization with respect to selected ionic
506	species and carbonaceous aerosols (sum of EC and OC). Dust aerosols displayed high
507	background levels (50 μ g m ⁻³) all year long, maximizing during the dust storm periods
508	(Favez <i>et al.</i> , 2008a). About 40% of Ca^{2+} on these dust aerosols was found to be
509	associated with ions of anthropogenic origin like $SO_4^{=}$, NO_3^{-} and/or Cl ⁻ , pointing out
510	human driven processes that alter the chemical characteristics of dust and thus its
511	climatic impact on a regional scale. High concentration levels of non-sea-salt Cl ⁻ (up
512	to 15 μ g m ⁻³ on a monthly basis), likely of industrial origin, were observed in autumn
513	and winter. During autumn, biomass burning aerosols originating from rice straw
514	burning in the Nile Delta, known as the "Black Cloud" event, have been estimated to
515	account for 12%, 35% and 50% of Cairo EC, water insoluble organic carbon (WIOC)
516	and WSOC mass concentrations, respectively.
517	Overall, non-dust aerosols were equally distributed between carbonaceous

518 aerosols and ions, and their concentrations were about 100 μ g m⁻³ in autumn and

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

519	winter, and 60 μ g m ⁻³ in spring and summer. Remarkably, relatively low WSOC/OC
520	ratios (about 1/3) were obtained all the year-long. Favez et al. (2008b) further
521	investigated the carbonaceous content in the sub micron fraction of aerosols at an
522	urban site in GCA in spring 2005. They found well-marked diurnal patterns for the
523	WSOC/EC and WIOC/EC ratios, with minima during the traffic-influenced morning
524	period and maxima during the intense photochemical periods, suggesting significant
525	formation of both WSOC and WIOC during the afternoon. Applying the EC-tracer
526	method, they evaluated that freshly-formed secondary OC accounts for more than
527	50% of OC concentrations measured during the early afternoon period. This fresh
528	SOC was calculated to be mainly (~60%) composed of WIOC species. The latter
529	(unexpected) result has been tentatively attributed to low ambient relative humidity
530	and high anthropogenic volatile organic compounds in Cairo (Favez et al., 2008b).

532 **4.2.3.** Athens

Grivas *et al.* (2008) analysed PM_{10} concentration data collected by the Greek air 533 534 quality monitoring network at 8 sites over the GAA, for the period of 2001-2004. Daily concentrations, averaged over the whole study period, ranged between 32.3 and 535 $60.9 \ \mu g \ m^{-3}$ and the four-year average concentration of PM₁₀ at five sites exceeded the 536 annual limit value of 40 μ g m⁻³, while most of the sites surpassed the allowed 537 percentage of exceedances of the daily limit value (50 µg m⁻³). The urban sites were 538 539 mainly affected by primary, combustion-related processes and especially vehicular 540 traffic, as deduced from the examination of the diurnal distribution of particulate 541 levels and by factor analysis. On the contrary, suburban background sites were subject 542 to particle transport from more polluted neighbouring areas and secondary particle 543 formation through gaseous precursors, both processes supported by favourable 544 meteorological conditions. The association of the PM₁₀ levels with backward

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

545	trajectories indicated that a notable part of area-wide episodic events could be
546	attributed to trans-boundary transport of particles (Querol <i>et al.</i> , 2009b).
547	5. Air pollution and impacts.
548	
549	5.1.Climate
550	In the Mediterranean, aerosols reduce the solar radiation absorption by the sea
551	by about 10%, alter the heating profile of the lower troposphere and exert a cooling
552	effect five times higher than the warming induced by the greenhouses gases
553	(Lelieveld et al., 2002; Vrekoussis et al., 2005). As a consequence, evaporation and
554	moisture transport, in particular towards North Africa and the Middle East, are
555	reduced. Satellite observation analysis (Rosenfeld, 2000) supported that aerosols
556	caused important perturbations to cloud microstructure and convection, probably
557	decreasing precipitation. Querol et al. (2009) analysis of available aerosol data in the
558	Mediterranean pointed out three very important climate relevant features of the
559	aerosols in the area: the increasing gradient of dust from the west towards the east; the
560	change of hygroscopic behavior of mineral aerosols (dust) via nitration and
561	sulphation; and the abundance of highly hygroscopic aerosols during high insolation
562	(low cloud formation) periods. Radiative forcing by aerosols also influences the
563	energy budget of the Mediterranean and the Black Sea, however the consequences of
564	this are still poorly understood. A changing energy budget and anomalous winds are
565	expected to influence the ocean circulation (Tragou and Lascaratos, 2003). Therefore,
566	aerosols may affect several components of the eastern Mediterranean atmosphere-
567	ocean system including the regional water cycle. These aerosol-generated effects are
568	already substantial today, even though sulphate from Europe has actually decreased in
569	the past two decades (Smith et al., 2010) through the abatement of acidification.
570	

A CCEDTED MANUSCODT

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

5.2. Health - ecosystems ACCEPTED MANUSCRIPT

571

572	During summer the persistent northerly winds carry large pollution loads from
573	Europe that can deposit onto the Mediterranean sea, for instance, nitrate and
574	phosphorus containing aerosols, which affect the water quality and could contribute to
575	eutrophication (Kouvarakis et al., 2001; Markaki et al., 2003). In addition, O ₃ levels
576	in the regions downwind pollution sources are also often exceeding phytotoxicity
577	levels (Kourtidis et al., 2002).
578	Furthermore, ageing of aerosols, such as coating of dust by pollution

compounds (Falkovich et al., 2004) or chemical trapping of nitrogen on pollen 579 580 particles (Franze et al., 2005), can be harmful for human health. Katsouyanni (1995) points out that air pollution effects on health, partly determined by specific mixtures 581 582 of air pollutants, may be altered by other environmental, behavioural and social 583 patterns. She also points out that the health effects of the interactions between pollutants and photochemical oxidants can be enhanced in the Mediterranean under 584 585 high temperatures and humidity patterns. She stresses that even if the health effects of air pollution only slightly increase the risk to an individual, they are likely to be 586 587 important for public health because of the ubiquitous exposure of the population. 588 El Mowafi and Atalla (2005) cited that approximately 3% of the GCA population is chronically exposed to PM_{10} levels above $100 \square \mu g.m^{-3}$, compared to 589

590 48% exposed to 100-50 $\Box\mu$ g.m⁻³ and 49% exposed to 50-5 $\Box\mu$ g.m⁻³ PM₁₀. Based on 591 ambient air pollutant concentrations Gurjar *et al.* (2008) have classified Cairo as a 592 megacity with extremely poor air quality, where measures for air pollution reduction 593 need to be taken urgently. It is estimated that 10,000 to 25,000 people a year in Cairo 594 die due to air pollution-related diseases. These findings indicate the significant 595 benefits that could be achieved by implementing the proper abatement measures to 596 improve air quality in Cairo.

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

597 6. Conclusions

598	Significant effort is recently paid on understanding atmospheric composition
599	change in the East Mediterranean due to human activities, supporting the role of the
600	basin as the 'pressure-cooker' of transported air pollution from distant anthropogenic
601	sources but also from surrounding urban centres. Air masses are mixed and aged in
602	the area under favourable meteorological conditions with high solar radiation.
603	Background O_3 observations show an increasing gradient towards the south that
604	partially compensates O_3 titration by NO_x in the urban sites. The increased regional
605	background contribution in Athens, Cairo and Finokalia compared to GIA are in line
606	with the observed CO/NO _x molar ratios. In GIA, CO/NOx molar ratio is close to that
607	observed in Mexico City and Tokyo whereas in GCA is double or triple, indicating
608	significant regional contribution to CO levels. This ratio maximizes at the background
609	atmosphere ranging from about 100 to more than 300 observed during summertime at
610	Finokalia, where long range transport is the dominant source for CO. GCA
611	experiences also high levels of NMVOC that point to a high O ₃ formation potential of
612	NO_x in this region. Satellite observations of HCHO and CHOCHO seem to indicate
613	different NMVOC speciation and sources over GCA than over GIA and GAA. Due to
614	the non linear dependence of O_3 on NO_x and NMVOC levels, control of NO_x
615	emissions is expected to lead to higher O_3 levels and thus O_3 exceedences in the cities.
616	Available information on NMVOC total amounts, reactivity and chemical speciation
617	is scarce, although the NMVOC/NOx ratio and VOC reactivity is critical for the
618	build-up of air pollution. CO observations in rural areas are also limited, despite the
619	key role of CO in O_3 production. There is a clear need of such reliable and systematic
620	measurements of NMVOC, NO_x and CO in the region to support modelling of air
621	pollution and climate impacts.

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

622	PM, even in the urban regions, is also shown to have a significant contribution
623	by long range transport of African dust or distance anthropogenic pollution sources
624	over the region. Data analysis has shown that a significant number of PM
625	exceedences, registered in Istanbul and Athens as long range transport episodes, are
626	associated with regional pollution or natural dust transport. PMF analysis of ground
627	based aerosol chemistry observations indicates that local anthropogenic sources
628	account for about 60% of PM levels in GIA and an additional 20% of PM levels is
629	associated with transported anthropogenic pollution. Based on satellite derived AOD,
630	the local anthropogenic emissions in GAA and GCA have been estimated to
631	contribute by15-30% and 25-50% to the total AOD, respectively. These estimates
632	need to be reconciled with ground based observations. On an annual mean basis, in
633	the East Mediterranean the background PM_{10} contains about 8-12 µg m ⁻³ of
634	transported mineral dust and an additional 5-10 μ g m ⁻³ is attributed to transported
635	anthropogenic regional sources and to sea-spray loads. Dust transport increases
636	towards the east of the basin and dust aerosols are coated by pollution components
637	that modify their climate relevant properties. The climatic impact of this mixture
638	remains to be determined. The first limited number of available PM_1 data show that
639	their composition and variability is tightly linked to the anthropogenic sources in the
640	area. OC/EC observations help elucidating the ageing of pollution air masses and the
641	contribution of photochemistry versus primary sources. Further studies of PM_1 mass
642	and chemical characterisation will elucidate the sources and impact of PM pollution in
643	the area.

645 Acknowledgements

This work has been supported by the EU FP7 project CITYZEN. Analyses and
visualizations of TES, MISR and MODIS data used in this study were produced with
the Giovanni online data system, developed and maintained by the NASA Goddard

Kanakidou et al revised for Atmos. Environ. Nov 17, 2010

649	Earth Sciences Data and Information Services Center (GES DISC). We thank Drs. J.
650	van Aardenne and U. Doering for the emission inventory developed for the
651	Mediterranean in the frame of the EU FP6 project CIRCE. We also thank the
652	reviewers for their useful comments. Scientific discussions within the IGAC SSC and
653	the iCACGP are acknowledged.
654	
655	References
656	Abu-Allaban, M, Gertler, A.W., Lowenthal, D.H., 2002. A preliminary apportionment of the sources of
657	ambient PM10; PM2.5; and VOCs in Cairo, Atmospheric Environment 36, 5549–5557.
658	Abu-Allaban , M, Lowenthal , D.H., Gertler, A.W. , Labib, M., 2007. Sources of PM10 and PM2.5 in
659	Cairo's ambient air, Environmental Monitoring and Assessment, 133:417-425 DOI
660	10.1007/s10661-006-9596-8.
661	Abu-Allaban, M, Lowenthal, D.H., Gertler, AW., Labib, M., 2009. Sources of volatile organic
662	compounds in Cairo's ambient air, Environmental Monitoring and Assessment, 157:179–189
663	DOI 10.1007/s10661-008-0526-9.
664	Acker, J.G., Leptoukh, G., 2007. Online Analysis Enhances Use of NASA Earth Science Data, Eos,
665	Trans. AGU, Vol. 88, No. 2, 14 -17.
666	Balis, D., Amiridis, V., Zerefos, C., Gerasopoulos, E., Andreae, M.O., Zanis, P., Kazantzidis, A.,
667	Kazadzis, S., Papayannis, A., 2003. Raman lidar and sunphotometric measurements of aerosol
668	optical properties over Thessaloniki, Greece during a biomass burning episode, Atmospheric
669	Environment, 37, 4529-2538.
670	Bardouki, H., Liakakou, H., Economou, C., Smolik, J., Zdimal, V., Eleftheriadis, K., Lazaridis, M.,
671	Mihalopoulos, N., 2003. Chemical composition of size resolved atmospheric aerosols in the
672	Eastern Mediterranean during summer and winter. Atmospheric Environment 37, 195–208.
673	Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., Koutrakis, P. 2003. Measurements of
674	PM10 and PM2.5 particle concentrations in Athens, Greece, Atmospheric Environment, 37,
675	649-660
676	CIA The World Factbook 2009 https://www.cia.gov/library/publications/the-world-
677	factbook/fields/2102.html?countryName=&countryCode=®ionCode=r
678	Demirov, E., Pinardi, N., 2002. Simulation of the Mediterranean Sea circulation from 1979 to 1993:
679	Part I. The interannual variability, Journal of Marine Systems 33-34, 23-50.
680	Doering, U, van Aardenne, J., Monni, S., Pagliari, V., Orlandini, L. and San Martin, F., 2009. CIRCE
681	report D8.1.3 Update of gridded emission inventories, addition of period 1990-2005 and the
682	years 2010, 2015, 2050, Project FP6: 6.3 - No. 036961 - CIRCE, .
683	Elminir, H.K., 2005. Dependence of urban air pollutants on meteorology, Science of the Total
684	Environment, 350, 225–237.
685	Ezber Y., Sen, O. L. , Kindap, T., Karaca, M. , 2007. Climatic effects of urbanization in Istanbul: a
686	statistical and modeling analysis, International J. Climatology 27: 667–679.

687	Falkovich, A. H., G. Schkolnik, E. Ganor, Y. Rudich, 2004. Adsorption of organic compounds
688	pertinent to urban environments onto mineral dust particles, J. Geophysical Research., 109,
689	D02208, doi:10.1029/2003JD003919.
690	Favez, O., H. Cachier, J. Sciare, S.C. Alfaro, T.M. El-Araby, M.A. Harhash, and M.M. Abdelwahab,
691	2008a, Seasonality of major aerosol species and their transformations in Cairo megacity,
692	Atmospheric Environment, 42, 1503–1516.
693	Favez, O., J. Sciare, H. Cachier, S.C. Alfaro, M.M. Abdelwahab, 2008. Significant formation of water-
694	insoluble secondary organic aerosols in semiarid urban environment, Geophysical Research.
695	Letters, 35, L15801, doi:10.1029/2008GL034446.
696	Fotiadi, A., Hatzianastassiou, N., Drakakis, E., Matsoukas, C., Pavlakis, K.G., Hatzidimitriou, D.,
697	Gerasopoulos, E., Mihalopoulos, N., Vardavas, I., 2006. Aerosol physical and optical
698	properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data,
699	Atmospheric Chemistry and Physics, 6, 5399-5413.
700	Franze, T., Weller, M.G., Niessner, R., and Pöschl, U., 2005. Protein Nitration by Polluted Air,
701	Environmental Science and Technology. 2005, 39, 1673-1678, DOI: 10.1021/es0488737
702	Gangoiti, G., Alonso, L., Navazo, M., Garcia, J.A., Millan, M., 2006. North African soil dust and
703	European pollution transport to America during the warm Seaton: Hidden links shown by a
704	passive tracer simulation, J. Geophysical Research, 111, D10109, doi:10.1029/2005JD005941.
705	Gerasopoulos, E., Kouvarakis, G., Vrekoussis, M., Kanakidou, M., Mihalopoulos, N., 2005. Ozone
706	variability in the marine boundary layer of the Eastern Mediterranean based on 7-year
707	observations. J. Geophysical Research 110, doi:10.1029/2005JD005991.
708	Gerasopoulos, E., Kouvarakis, G., Babasakalis, P., Vrekoussis, M., Putaud, JP., Mihalopoulos, N.,
709	2006a. Origin and variability of particulate matter (PM10) mass concentrations over the
710	Eastern Mediterranean, Atmospheric Environment, 40(25), 4679-4690.
711	Gerasopoulos E., Kouvarakis, G., Vrekoussis, M., Donoussis, Ch. Mihalopoulos, N., Kanakidou, M.,
712	2006b. Photochemical ozone production in the Eastern Mediterranean, Atmospheric
713	Environment, 40, 3057-3069.
714	Gerasopoulos, E., Koulouri, E., Kalivitis, N., Kouvarakis, S., Makela, T., Hillamo, R., Mihalopoulos,
715	N., 2007. Size-segregated mass distributions of arosols over Eastern Mediterranean: seasonal
716	variability and comparison with AERONET columnar size-distributions, Atmospheric
717	Chemistry and Physics, 7, 2551-2561.
718	Granier C., A. Guenther, J. F. Lamarque, et al., "POET, a database of surface emissions of ozone
719	precursors," 2005, http://www.aero.jussieu.fr/projet/ACCENT/POET.php
720	Grivas, G., Chaloulakou, A., Kassomenos, P, 2008. An overview of the PM ₁₀ pollution problem, in the
721	Metropolitan Area of Athens, Greece. Assessment of controlling factors and potential impact
722	of long range transport, Science of the Total Environment, 389, 165-177.
723	Gülsoy, G., Tayanç, M., Ertürk, F., 1999. Chemical analysis of the major ions in the precipitation of
724	Istanbul, Turkey, Environmental Pollution 105, 273–280.
725	Gurjar, B.R., Butler, T.M., Lawrence, M.G., Lelieveld, J., 2008. Evaluation of emissions and air
726	quality in megacities, Atmospheric Environment 42, 1593-1606.

727	Hatzianastassiou, N., A. Gkikas, N. Mihalopoulos, O. Torres, B.D. Katsoulis, 2009. Natural versus
728	anthropogenic aerosols in the eastern Mediterranean basin derived from multiyear TOMS and
729	MODIS satellite data, J. Geophysical Research., 114, D24202, doi:10.1029/2009JD011982.
730	Hatzianastassiou, N., Katsoulis, B. D, Antakis, B., 2007. Extreme Nitrogen Oxide and Ozone
731	Concentrations in Athens Atmosphere in Relation to Meteorological Conditions,
732	Environmental Monitoring and Assessment, 128:447–464, DOI 10.1007/s10661-006-9338-y.
733	Hildebrandt, L., Engelhart, G.J., Mohr, C., Kostenidou, E., Lanz, V.A., Bougiatioti, A., DeCarlo, P.F.,
734	Prevot, A.S.H., Baltensperger, U., Mihalopoulos, N., Donahue, N.M., Pandis, S.N., 2010.
735	Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement
736	Experiment – 2008, Atmospheric Chemistry and Physics, 10, 4167-4186, doi:10.5194/acp-10-
737	4167-2010,.
738	Hudson, R.D., Frolov, A.D., Andrade, M.F., Follette, M.B., 2003. The total ozone field separated into
739	meteorological regimes. Part I: defining the regimes. Journal of Atmospheric Sciences 60
740	(14), 1669–1677.
741	Hubert-Ferrari, A., Armijo, R., King, G., Meyer, B., Barka, A., 2002. Morphology, displacement, and
742	slip rates along the North Anatolian Fault, Turkey, J. Geophysical Research, 107(B10), 2235,
743	doi:10.1029/2001JB000393.
744	Im, U., Tayanç, M., Yenigün, O., 2008. Interaction patterns of major photochemical pollutants in
745	Istanbul, Turkey, Atmospheric Research, doi:10.1016/j.atmosres.2008.03.015
746	Im, U., Tayanç, M., Yenigün, O., 2006. Analysis of major photochemical pollutants with
747	meteorological factors for high ozone days in Istanbul, Turkey. Water, Air, and Soil Pollution
748	175, 335–359.
749	Im, U., Markakis, K., Unal, A., Kindap, T., Poupkou, A., Incecik, S., Yenigun, O., Melas, D.,
750	Theodosi, C., Mihalopoulos, N., 2010. Study of a winter PM episode in Istanbul using high
751	resolution WRF/CMAQ modeling system. Atmospheric Environment, 44, 3085-3094.
752	Im, U., Tek, A., Kindap, T., Topçu ,S., Incecik, S., Yenigun, O., Odman, M.T., Tayanc, M., 2009.
753	Investigation of tropospheric ozone levels in urban and semi-urban areas of Istanbul. 7th
754	International Conference on Air Quality - Science and Application (Air Quality 2009),
755	Istanbul, 24-27 March 2009.
756	Intergovernmental Panel on Climate Change (IPCC) (2007): Climate Change 2007: The Physical
757	Science Basis. Summary for Policymakers. Paris, February 2007.
758	Kalabokas, P.D., Volz-Thomas, A., Brioude, J., Thouret, V., Cammas, JP., Repapis, C.C. , 2007.
759	Vertical ozone measurements in the troposphere over the Eastern Mediterranean and
760	comparison with Central Europe, Atmospheric Chemistry and Physics, 7, 3783-3790.
761	Kalabokas, P.D., Viras, L.G., Repapis C.C., 1999a. Analysis of 11-year record (1987-1997) of air
762	pollution measurements in Athens, Greece, Part I: primary air pollutants Global Nest: the Int.
763	J., 1(3), 157-167.
764	Kalabokas, P.D., Viras, L.G., Repapis C.C., Bartzis, J.G., 1999b. Analysis of 11-year record (1987-
765	1997) of air pollution measurements in Athens, Greece, Part II: Photochemical air pollutants,
766	Global Nest: the Int. J., 1(3), 169-176.
767	Kalabokas P.D., Repapis , C.C. 2004. A climatological study of rural surface ozone in central Greece,
768	Atmospheric Chemistry and Physics, 4, 1139–1147.

769	Kalivitis, N., Gerasopoulos, E., Vrekoussis, M., Kouvarakis, G., Kubilay, N., Hatzianastassiou, N.,
770	Vardavas, I., Mihalopoulos, N., 2007. Dust transport over the Eastern Mediterranean from
771	TOMS, AERONET and surface measurements, J. Geophysical Research., 112, D03202,
772	doi:10.1029/2006JD007510.
773	Kallos, G., Kassomenos, P. and Pielke, R.A., 1993. Synoptic and mesoscale weather conditions during
774	air pollution episodes in Athens, Greece. Boundary Layer Meteorology, 62, 163-184.
775	Kallos, G., Kotroni, V., Lagouvardos, K., Papadopoulos, A., 1998. On the long-range transport of air
776	pollutants from Europe to Africa. Geophysical Research Letters 25, 619-622.
777	Kallos, G., Astitha, M., Katsafados, P., Spyrou, Ch., 2007. Long-range transport of anthropogenically
778	and naturally produced particulate matter in the Mediterranean and North Atlantic: Current
779	state of knowledge, J. of Applied Meteorology and Climatology, 46, 1230-1251.
780	Kanakidou, M., Mihalopoulos, N., Kalivitis, N., Tsigaridis, K., Kouvarakis, G., Koulouri, E.,
781	Gerasopoulos, E., Vrekoussis, M., Myriokefalitakis, S., 2007. Natural contributions to
782	particulate matter levels over Europe - the experience from Greece, In CEST2007: A-585-
783	592. http://www.srcosmos.gr/ srcosmos/showpub.aspx?aa=9717
784	Karaca F., Camci, F., 2010. Distant source contributions to PM10 profile evaluated by SOM based
785	cluster analysis of air mass trajectory sets, Atmospheric Environment 44, 7, 892-899
786	doi:10.1016/j.atmosenv. 2009.12.006
787	Karaca, F., Alagha, O., Erturk, F., 2005. Statistical characterization of atmospheric PM10 and PM2.5
788	concentrations at a non-impacted suburban site of Istanbul, Turkey. Chemosphere 59, 1183-
789	1190.
790	Kassomenos, P.A., Katsoulis, B. D., 2006, Mesoscale and macroscale aspects of the morning Urban
791	Heat Island around Athens, Greece, Meteorol Atmos Phys 94, 209–218, DOI
792	10.1007/s00703-006-0191-x
793	Katsouyanni, K. ,1995. Health Effects of Air Pollution in Southern Europe: Are There Interacting
794	Factors?, Environmental Health Perspectives, 103, S2, 23-27,
795	Http://www.jstor.org/stable/3432445
796	Kindap, T., Unal, A., Chen, S.H., Hu, Y., Odman, M.T., Karaca, M., 2006. Long-range aerosol
797	transport from Europe to Istanbul, Turkey. Atmospheric Environment 40: 3536–3547.
798	Kindap T., 2008. Identifying the Trans-Boundary Transport of Air Pollutants to the City of Istanbul
799	Under Specific Weather Conditions, Water Air Soil Pollut 189:279–289, DOI
800	10.1007/s11270-008-9618-y.
801	Kindap, T., et al., 2009. Potential Threats from a Likely Nuclear Power Plant Accident: a
802	Climatological Trajectory Analysis and Tracer Study" Water, Air, & Soil Pollution, 198, 1-4.
803	Khoder M.I., 2002. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen
804	dioxide to particulate nitrate and gaseous nitric acid in an urban area, Chemosphere 49, 675-
805	684.
806	Khoder M.I., 2009. Diurnal, seasonal and weekdays-weekends variations of ground level ozone
807	concentrations in an urban area in greater Cairo, Environ Monit. Assess, 149:349-362 DOI
808	10.1007/s10661-008-0208-7
809	Koçak M., Mihalopoulos, N. Kubilay, N., 2008. Contributions of natural sources to high PM10 and
810	PM2.5 events in the eastern Mediterranean, Atmospheric Environment, 41 (18): 3806- 3818.

811	Koçak M., N., Theodosi Ch., C. Theodosi, P. Zarmpas, U. Im, A. Bougiatioti, O. Yenigun,
812	Mihalopoulos N., 2010. Particulate matter (PM10) in Istanbul: Origin, source areas and
813	potential impact on surrounding regions, Atmospheric Environment, under review, 2010.
814	Koulouri, E. et al. ,2008a. Chemical Composition and sources of fine and coarse aerosol particles in the
815	Eastern Mediterranean, Atmospheric Environment, 42, 6542-6550.
816	Koulouri E, Grivas G, Gerasopoulos E, Chaloulakou A, Mihalopoulos N, Spyrellis N, 2008b. "Study of
817	size-segregated particle (PM1, PM2.5, PM10) concentrations over Greece", Global NEST
818	Journal 10 (2) : 132-139.
819	Kourtidis, K., et al., 2002. Regional levels of ozone in the troposphere over eastern Mediterranean, J.
820	Geophysical Research., 107(D18), 8140, doi:10.1029/2000JD000140.
821	Kouvarakis, G., Mihalopoulos, N. ,2002. Seasonal variation of dimethylsulfide in the gas phase and of
822	methanesulfonate and non-sea-salt sulfate in the aerosols phase in the Eastern Mediterranean
823	atmosphere. Atmospheric Environment 36 (6), 929–938.
824	Kouvarakis, G., Tsigaridis, K., Kanakidou, M., Mihalopoulos, N. , 2000. Temporal variations of
825	surface regional background ozone over Crete Island in the southeast Mediterranean. J.
826	Geophysical Research 105, 4399–4407.
827	Kouvarakis, G., N. Mihalopoulos, T. Tselepides, S. Stavrakakis, 2001. On the importance of
828	atmospheric nitrogen inputs on the productivity of Eastern Mediterranean, Global
829	Biogeochemical Cycles, 15, 805-818.
830	Kouvarakis, G., Bardouki H., Mihalopoulos, N, 2002, Sulfur budget above the Eastern Mediterranean:
831	relative contribution of anthropogenic and biogenic sources, Tellus B., 54B, 201-212.
832	Ladstätter-Weißenmayer A., M. Kanakidou, J. Meyer-Arnek, E. V. Dermitzaki, A. Richter, M.
833	Vrekoussis, F. Wittrock, J. P. Burrows, 2007. Pollution events over the East Mediterranean:
834	Synergistic use of GOME, ground based and sonde observations and models, Atmospheric
835	Environment, doi:10.1016/j.atmosenv.2007.05.031, 41, 7262-7273.
836	Lawrence, M. G., Butler, T. M., Steinkamp, J., Gurjar, B. R., Lelieveld, J., 2007: Regional pollution
837	potentials of megacities and other major population centers, Atmospheric Chemistry and
838	Physics, 7, 3969-3987, doi:10.5194/acp-7-3969-2007.
839	Lelieveld, J., Berresheim, H., et al., 2002. Global air pollution crossroads over the Mediterranean.
840	Science 298, 794–799.
841	Lelieveld, J., Hoor, P., Jöckel, P., Pozzer, A., Hadjinicolaou, P., Cammas, JP., and Beirle, S., 2009:
842	Severe ozone air pollution in the Persian Gulf region, Atmospheric Chemistry and Physics, 9,
843	1393-1406.
844	Liakakou, E., Bonsang, B., Williams, J., Kalivitis, N., Kanakidou, M., Mihalopoulos, N., 2009. C2-C8
845	NMHCs over the Eastern Mediterranean: Seasonal variation and impact on regional oxidation
846	chemistry, Atmospheric Environment, doi:10.1016/j.atmosenv.2009.07.067
847	Markaki, Z., Oikonomou, K., Kocak, M., Kouvarakis, G., Chaniotaki, A., Kubilay, N., Mihalopoulos,
848	N., 2003. Atmospheric deposition of inorganic phosphorus in the Levantine Basin, Eastern
849	Mediterranean: spatial, temporal variability and its role on the productivity of the Eastern
850	Mediterranean Sea. Limnol. Oceanogr. 48, 1557–1568.
851	Markakis, K., Im, U., Unal, A., Melas, D., Yenigun, O., Incecik, S., 2009. A computational
852	approach for the compilation of a high spatially and temporally resolved emission inventory

853	for the Istanbul Greater Area. 7th International Conference on Air Quality Science and
854	Application, 24-27 March 2009, Istanbul.
855	Markakis, K., Poupkou, A., Melas, D., Tzoumaka, P, Petrakakis, M., 2010. A computational approach
856	based on GIS technology for the development of an anthropogenic emission inventory for air
857	quality applications in Greece. Water, Air & Soil Pollution 207:157–180.
858	Markakis, K., Poupkou, A., Melas, D., Zerefos, C., 2010. A GIS based methodology for the
859	compilation of an anthropogenic PM ₁₀ emission inventory in Greece. Environmental Pollution
860	Research 1 (2):71-81
861	Melas, D., Ziomas, I.C., Zerefos, C.1995. Boundary layer dynamics in an urban coastal environment
862	under sea breeze conditions, Atmospheric Environment, 29, 3605-3617.
863	Melas, D., Ziomas, I., Klemm, O., Zerefos, C., 1998. Anatomy of sea breeze circulation in Greater
864	Athens under weak large-scale ambient winds. Atmospheric Environment 32, 2223-2237.
865	Mihalopoulos, N., Stephanou, E., Kanakidou, M., Pilitsidis, P. Bousquet, S., 1997. Tropospheric
866	aerosol ionic composition above the eastern Mediterranean area, Tellus, 49B, 314-326.
867	Mihalopoulos N., Kerminen, V-M., Kanakidou, M, Berresheim, H., Sciare, J., 2007. Formation of
868	particulate sulfur species (sulfate and methanesulfonate) during summer over the Eastern
869	Mediterranean : A modelling approach, Atmospheric Environment doi:10.1016/j.atmosenv.
870	2007.04.039.
871	El Mowafi, S. A., Atalla, A. G., 2005. Strategies for controlling mobile emissions in Cairo,
872	Management of Environmental Quality: An International Journal, 16, 5, 548-559, ISSN:
873	1477-7835. www.emeraldinsight.com/1477-7835.htm
874	Nasralla, M.M., 2001. Greater Cairo Air Quality Profile. Egyptian Environmental Affair Agency,
875	Cairo, Egypt.
876	OECD, 2008. OECD Territorial Reviews, Istanbul, Turkey. ISBN-978-92-64-04371-8
877	http://browse.oecdbookshop. org/oecd/pdfs/browseit/0408051E.PDF
878	Ozdemir, H., Im, U., Markakis, K., Agacayak, T., Unal, A., Kindap, T., Khan, M., 2009. Impacts of
879	Istanbul emissions on regional air quality: quantification using Model-3 Framework and
880	trajectory analysis. 8th Annual CMAS Conference, Chapel Hill, USA, October 19-21
881	Papayannis, A., et al., 2008. Systematic lidar observations of Saharan dust over Europe in the frame of
882	EARLINET (2000–2002), J. Geophysical Research., 113, D10204,
883	doi:10.1029/2007JD009028.
884	Papayannis, A., et al., 2005. Measurements of Saharan dust aerosols over the Eastern Mediterranean
885	using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the
886	frame of the EARLINET project, Atmos. Chem. Phys., 5, 2065-2079.
887	Parrish, D.D., Kuster, W.C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P.D., de Gouw, J.A., Koike,
888	M., Shirai, T., 2009. Comparison of air pollutant emissions among mega-cities, Atmospheric
889	Environment, 43, 6435-6441.
890	Querol, X., Alastuey, A., Pey, J., Cusack, M., Pérez, N., Mihalopoulos, N., Theodosi, C.,
891	Gerasopoulos, E., Kubilay, N., Koçak, M., 2009. Variability in regional background aerosols
892	within the Mediterranean, Atmospheric Chemistry and Physics 9, 4575-4591.
893	Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Pérez, N., Moreno, T., Viana, N.,
894	Mihalopoulos, N., Kallos, G., Kleanthous, S., 2009. African dust contributions to mean

895	ambient PM10 mass-levels across the Mediterranean basin. Atmospheric Environment,						
896	43,4266- 4277.						
897	Robaa, S.M., 2003. Urban-suburban/rural differences over Greater Cairo, Egypt, Atmósfera, 157-171.						
898	Rosenfeld, D., 2000. Suppression of rain and snow by urban and industrial pollution, Science, 287,						
899	1793-1796.						
900	Sillanpää, M, Hillamo, R, Saarikoski, S, Frey, A, Pennanen, A, Makkonen, U, Spolnik, Z, Van						
901	Grieken, R, Branis, M, Brunekreef, B, Chalbot, M-C, Kuhlbusch, T, Sunyer, J, Kerminen, V-						
902	M, Kulmala, M, Salonen, RO., 2006. Chemical composition and mass closure of particulate						
903	matter at six urban sites in Europe. Atmospheric Environment 40:S212-S223						
904	Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R., Volke, A., Delgado Arias, S., 2010.						
905	Anthropogenic sulfur dioxide emissions: 1850-2005, Atmospheric Chemistry and Physics						
906	Discussions, 10, 16111-16151, doi:10.5194/acpd-10-16111-2010.						
907	Tayanç, M., 2000. An assessment of spatial and temporal variation of sulfur dioxide levels over						
908	Istanbul, Turkey, Environmental Pollution, 107, 61–69.						
909	Theodosi, C., Im, U., Bougiatioti, A., Zarmpas, P., Yenigun, O., Mihalopoulos, N., 2010. Aerosol						
910	chemical composition over Istanbul, Science of the Total Environment, 408 (12), 2482-2491.						
911	Thomas Brinkhoff, 2009. The Principal Agglomerations of the World, http://www.citypopulation.de						
912	Tragou, E., and Lascaratos, A. 2003. Role of aerosols on the Mediterranean solar radiation, J.						
913	Geophysical Research., 108, doi:10.1029/2001JC001258.						
914	van Aardenne, J.A., Doering, U., Monni, S., Pagliari, V., Orlandini, L., San Martin, F., CIRCE report						
915	D8.1.1 Emission inventory for the entire past period 1990-2005 on 0.1x0.1 grid, Project FP6:						
916	6.3 – No. 036961 - CIRCE, 2009						
917	Vestreng, V., Rigler, E., Adams, M., Kindbom, K., Pacyna, J.M., van der Gon, H.Dr, Reis, S.,						
918	Travnikov, O., 2006. Inventory Review 2006, Emission Data reported to LRTAP Convention						
919	and NEC Directive, Initial review of HMs and POPs. Technical report MSC-W 1/2006.						
920	Vrekoussis, M., Liakakou, E., Koçak , M., Kubilay, N., Oikonomou, K., Sciare, J., Mihalopoulos, N.						
921	2005. Seasonal variability of optical properties of aerosols in the Eastern Mediterranean.						
922	Atmospheric Environment 39, 7083–7094.						
923	Vrekoussis M., Liakakou, E., Mihalopoulos, N., Kanakidou, M., Crutzen, P.J., Lelieveld, J. 2006.						
924	Formation of HNO ₃ and NO ₃ ⁻ in the anthropogenically-influenced eastern Mediterranean						
925	marine boundary layer, Geophyical. Reseasrch Letter, 33, L05811, doi:10.1029/						
926	2005GL025069.						
927	Vrekoussis, M., Wittrock, F., Richter, A., and Burrows, J. P., 2009: Temporal and spatial variability of						
928	glyoxal as observed from space, Atmospheric Chemistry and Physics, 9, 4485–4504.						
929	Vrekoussis M., Gerasopoulos, E., Mihalopoulos, N., Im, U., et al., 2009. Spatial and temporal						
930	variability NO2 mixing ratios inferred from satellite and ground-based observations above SE						
931	Europe: Role of Megacities, in the proceedings of the 7th International Conference on Air						
932	Quality –Science and Application, 24-27 March 2009, Istanbul. ISBN: 978-1-905313-64-8,						
933	published by University of Hertfordshire 2009.						
934	Zerefos, C., Ganev, K., Kourtidis, K., Tzortziou, M., Vasaras, A., Syrakov, E., 2000. On the origin of						
935	SO_2 above northern Greece, Geophysical Reseasrch Letters, 27, 365–368.						

- Zakey, A. S., and Omran, M. A., 1997. 1st LAS/WMO International Symposium on Sand and Dust
 Storms, WMO Programme on Weather Prediction Research Report Series Project No. 10,
 World Meteorological Organization (WMO), Technical Document No. 864.
 Zakey, A. S, Abdel-Wahab, M. M., Pettersson, J. B. C, Gatari, M. J., Hallquist, M., 2008. Seasonal and
 spatial variation of atmospheric particulate matter in a developing megacity, the Greater Cairo,
- 941 Egypt. Atmósfera 21,2, 171-189. ISSN 0187-6236.

ACCEPTED MANUSCRIPT

942 **Figures**

- 943 Figure 1: Map for the probability of arrival of trajectories starting from (a) Istanbul,
- 944 (b) Cairo, (c) Athens, over the 30 years period based on NCEP 6-hourly
- meteorological data at 2.5° resolution, see text. Dot points indicate the city of 945
- 946 Istanbul, Cairo and Athens respectively.
- 947 (a)

Figure 2: (a) Tropospheric O_3 column as deduced from TES (Tropospheric Emission Spectrometer) satellite sensor gridded in $2^{\circ}x4^{\circ}$ lat x lon – The locations of Istanbul, Athens, Cairo and Finokalia are indicated; (b): Tropospheric NO₂ column from SCIAMACHY; (c) MISR aerosol optical thickness (AOT) at 443 nm in 0.5°x0.5° and (c) MODIS aerosol small mode fraction in $1^{\circ}x1^{\circ}$ resolution. Mean columns for the years 2005-2006. (a, c, d) have been derived from daily data using the Giovanni visualization tool of NASA (Acker and Leptouck, 2007).

ACCEPTED MANUSCRIPT

Figure 3. Satellite observations of air pollutants over GIA, GCA, GAA and Finokalia 966 in the East Mediterranean. Mean over the period 2003-2009 from SCIAMACHY: 967 Tropospheric columns of NO₂ in 10¹⁵ molecules cm⁻² and CHOCHO and HCHO in 968 10^{14} molecules cm⁻² (multiplied by 3, 5 and 5 respectively) in a grid of $0.25^{\circ} \times 0.25^{\circ}$ 969 covering the city. Mean tropospheric column of O₃ as deduced from SCIAMACHY 970 971 (2003-2009) based on limb-nadir-matching and mean AOD at 550 nm from MODIS (2000-2008) in 1°x1° grid (multiplied by 100). 972 973

975 **Figure 4.** Relationship between mean observations of CO (ppmv) and NOx (ppbv)

976 levels in Istanbul, Athens, Cairo and Finokalia based on data reported in Table 3 and

977 references therein. Lines correspond to the CO:NOx molar ratios of 11 and 100.

979 Table 1 – Megacities and receptor location (Finokalia, Crete, Greece) characteristics (reference year 2009). General sources: Thomas

980 Brinkhoff, 2009; http://www.worldclimate.com/ (from data prior to 1990) * Extended region, in brackets highly populated area.

Characteristic	Istanbul	Cairo	Athens	Finokalia
Latitude, longitude	41.01°N, 28.97°E	30.03°N, 31.3°E	37.96°N, 23.71°E	35.33°N, 25.66°E
Continent	Europe-Asia	Africa	Europe	Europe
Surface (km ²)	6220	8815* (200)	3808* (450)	-
Population (Millions)	12.5	15.2	4.4	-
Ranked as Megacity	21 st	16 th	-	Background
population growth % over	45	16.4 (all Egypt)	6	-
the last decade	29.6 (urban parts)	18 (urban – Egypt)		
	81 (rural parts)			
Typical air temp. (°C)				2001-2009
winter average	8	15	10	11.6
summer average	28	28	26	24.2
Wind speed m/s	last 30 years	1995-2000	1984-2004 – Thissio	2001-2009
Annual mean	2.7	Urban; suburban; rural	3.3	5.8
Winter	3.0	2.2 3.7 3.1	3.4	5.8
summer	2.4	2.1 4.3 3.5	3.5	6.6
Mean precipitation (mm/yr)	800	25	400	350
Type of climate	Mediterranean	Sub tropical	Mediterranean	Mediterranean
	(southern part)		Hot dry summer	
	Cooler + wetter		Wet mild winter	
	(northern part)			
Heat island (°C max	1°	$\leq 2.1^{\circ}$	exceeding 4° in 20% of studied	-
surface temp. change)			cases	
References	Ezber et al., 2007;	Zakey and Omran, 1997;	Kallos et al., 1993; Melas et al.,	Gerasopoulos et al., 2005 ;
	Kindap, 2008	Khoder, 2009; Zakey et al.,	1995; Kassomenos & Katsoulis,	2006; Vrekoussis et al., 2006
	X	2008; Robaa, 2003	2006	

981 Table 2 – Anthropogenic emissions from Istanbul (reference 2007: Markakis *et al.*, 2009), Athens (reference year 2003; Markakis *et al.*,

2010a,b) and Cairo (reference year 2005; van Aardenne *et al.*, 2009, Duering *et al.*, 2009; # Cairo inventory concerns PM2.5 emissions)
greater areas.

	Residential Combustion	Industry	Fuel Extr./ Distribution	Solvent Use	Road Transport	Off-road	Maritime	Waste	Energy	Total Ktops/yr
	70	/0	/0	/0		70	/0	70		Ktolis/ yi
Istanbul	10.8	3.7	_	_	83.1	-	0.3	0.7	0.7	437
Athens	8.0	3.2	-	-	75.6	13.0	0.2	-	2	473
Cairo	28.8	31.2			35.5			2.2	2.4	285
					NOx					
Istanbul	2.1	2.4	-	-	79.4	2.8	9.5	-	3.2	305
Athens	3.1	22.4	-	-	51.0	17.8	3.1	-	2.6	78
Cairo	4.0	50.2			11.4	3.37		0.12	30.9	222
					SO ₂		· · · ·	-		
Istanbul	14.7	23.2	2.3	-	2.3	4.1	17.6	-	35.6	91
Athens	14.9	29.1	8.4	-	3.2	7.2	11.3	-	25.9	31
Cairo	7.6	71.5			4.4					135
				N	MVOC					
Istanbul	2.6	0.5	-	29.8	44.8	0.4	0.6	20.4	0.2	77
Athens	3.2	2.1	2.0	13.8	70.6	5.7	0.5	-	2.1	93.2
Cairo	11	2.6		43.8	36.9			0.8		62.3
				P	PM10 #					
Istanbul	7.1	64.9	0.1	-	17.4	3.9	3.1	1.7	1.8	61
Athens	18.0	62.7	-	<u> </u>	13.0	0.8	1.9	3.6	-	21
Cairo #	53.4	4.3			35.9			4.4		6.4

984 Table 3 – Comparison of surface air pollution levels in Istanbul, Cairo, Athens and Finokalia -Crete (background site) in the East

985 Mediterranean. PM_{10} and $PM_{2.5}$ are particles of diameter smaller than 10 and 2.5 microns, respectively.

Pollutant	Season/Date	Average	Location	Reference
O ₃ ppbv	1998-2008 2001-2005 2008-2009	<30 8 ± 7 11 ± 8 25.3 ± 16.8 19.9 ± 14.2	Istanbul * Saraçhane- Europe Kadikoy-Asia Buyukada Kandilli	Ozdemir et al. 2009 Im et al., 2009 Im et al., 2009 "
O ₃ ppbv	Winter 2005 Spring 2005 Summer 2005 Fall 2005 2002	Day / Dial 44 / 30 65 / 48 91 / 64 58 / 43 23.4	Cairo (Giza) Abbassiya	Khoder 2009 Elminir et al., 2005
O ₃ ppbv	1987–1996 winter (Dec.–Jan.) summer (Jul-Aug)	(12:00-18:00 LT) ~ 25 ~ 60	Athens	Kalabokas and Repapis, 2004
O ₃ ppbv	1997-2004 July-Aug. Dec	49 ± 11 58 ± 10 36 ± 7	Finokalia-Crete	Gerasopoulos et al., 2006b
NO ₂ ppbv	2001-2005	25±18.9 (NO: 24±46.3) 8.8±7.8 (NO: 2±5.8)	Kadıköy Sarachane	Im et al., 2008

	Dec. 2004 - Nov. 2005 (hourly)	60-150	Cairo- Giza		
NO mehr	Winter (hourly)	80-200 (NO: 95-200)	Cairo- Giza	Khoder, 2009	
NO ₂ ppov	Summer (hourly)	60-130 (NO: 45-125)	Cairo- Giza	Khoder, 2009	
	2002	~40	Abbassiva	Elminir et al., 2005	
		57±5.3 (NO: 140.5±9.6)	Athens-Patission		
NO ₂ ppbv	1987-1997	18 ±4 (NO:31.9±18.0)	Maroussi	Kalabokas et al., 1999b	
		42.6±4.3 (NO:73.5±18.0)	Athinas		
NO ₂ ppbv	June 2001 – Sept. 2003	0.35±0.31 (NO:0.033±0.020)	Finokalia-Crete	Vrekoussis et al., 2006	
$CO ma m^{-3}$	2004 2006	1.181 ± 0.957	Sarachane	Im at al. 2008	
CO mg m	2004-2008	0.956±1.233	Kadikoy	III et al., 2008	
CO mg m ⁻³	2002	~6 (4-10)	Cairo- Abbassiya	Elminir et al., 2005	
		6.2±1.2	Athens-Patission		
CO mg m ⁻³	1987-1997	1.9±0.6	Maroussi	Kalabokas et al., 1999b	
		3.8±0.5	Athinas		
$CO ma m^{-3}$	July-Oct 2005 and	0.142	Finalealia Crata	Unpublished data	
CO ling lin	Jul-Oct 2007	~ 0.145	Tillokalla-Ciele	Onpublished data	
SO_{1} ug m ⁻³	1998-2008	~22	Istanbul *	Ozdemir et al. 2009	
$50_2 \mu g \mathrm{m}$		(7.5 - 45)	Istanour	Ozdenini et al., 2009	
SO_{1} ug m ⁻³	Winter 1999-2000	125±21.6	Coiro (Cizo)	Khadar 2002	
$50_2 \mu g \mathrm{m}$	Summer 2000	83±17.6	Callo (Giza)	KII0001, 2002	
SO	1005 1007	25±3	Athinas- Athens	Kalabakas at al. 1000b	
$SO_2 \mu g m$	1995-1997	40±4	Patission-Athens	Kalabokas et al., 19990	
$SO_2 \ \mu g \ m^{-3}$	1997-1999	2.7±0.9	Finokalia -Crete	Kouvarakis et al., 2002	
	Jul 2002-Jul 2003	47.1	Istanbul	Karaca et al., 2005	
$PM_{10} \ \mu g \ m^{-3}$	1998-2008	66 (47 – 115)	*	Ozdemir et al., 2009	
	Nov 2007- Jun 2009	39.1	Background- Boğaziçi Univ.	Theodosi et al., 2010	
PM ₁₀ (bulk aerosol)	2005: Win., Spr., Sum., Fall	215, 190, 115, 165	Cairo (Giza & El-Gomhoreya)	Favez et al., 2008	

μg m ⁻³	2001-2002	170 ±25	Cairo (17 sites)	Zakey et al., 2008
		140 ± 40	Background -Cairo	«
$PM_{10} \ \mu g \ m^{-3}$	Jun1999-May 2000	75.5 ±27.5	Athens	Chaloulakou et al., 2003
$\mathbf{PM} = \mathbf{m}^{-3}$	2001–02 & 2004–05	28±30	Finakalia Crata	Gerasopoulos et al, 2006a;
\mathbf{r} w \mathbf{r}_{10} µg m	2004-2006	32.5±27.7	T'mokana-Crete	2007; Koulouri et al., 2008
$PM_{2.5}\mu g m^{-3}$	Jul 2002-Jul 2003	20.8	Istanbul	Karaca et al., 2005
$PM_{2.5} \ \mu g \ m^{-3}$	2001-2002	85±12	Cairo (17 sites)	Zakey et al., 2008
$PM_{2.5} \mu g m^{-3}$	Jun1999-May 2000	40.2±16.7	Athens-Aristotelous	Chaloulakou et al., 2003
	2004-2006	23.7±10.7	Athens-Lykovrissi	Koulouri et al., 2008b
		29.3±10.4	Athens-Goudi	"
$PM_{2.5} \ \mu g \ m^{-3}$	2004-2006	18.2	Finokalia-Crete	Gerasopoulos et al., 2007
		17.9±12.4		Koulouri et al., 2008
OC/EC	Nov 2007- Jun 2009	1.98 (PM ₁₀)	Istanbul – urban Background	Theodosi et al., 2010
OC/EC	March- April 2005	1.4 ± 0.3 (morning)	Cairo : El-Gomhoreya and	Favez et al., 2008a
		2.9 ± 0.5 (early afternoon)	Giza	«
	2005	2.5 - 5.0 Bulk aerosol		Favez et al., 2008b
OC/EC	June–July 2003	3.9±0.9 (PM _{2.5})	Athens	Sillanpaa et al., 2006
		24±17 (PM _{2.5-10})		
OC/EC	July 2004-July 2006	4.0 (PM _{1.3})	Finokalia- Crete	Koulouri et al., 2008a
		4.0 ($PM_{1.3-10}$ non-dust cases)		
*10 municipality s	tations			
		Y		

*10 municipality stations 986